Initial commit: Masina-Dock Vehicle Management System
This commit is contained in:
commit
ae923e2c41
4999 changed files with 1607266 additions and 0 deletions
|
|
@ -0,0 +1,7 @@
|
|||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(params=[True, False])
|
||||
def sort(request):
|
||||
"""Boolean sort keyword for concat and DataFrame.append."""
|
||||
return request.param
|
||||
|
|
@ -0,0 +1,389 @@
|
|||
import datetime as dt
|
||||
from itertools import combinations
|
||||
|
||||
import dateutil
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
Timestamp,
|
||||
concat,
|
||||
isna,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestAppend:
|
||||
def test_append(self, sort, float_frame):
|
||||
mixed_frame = float_frame.copy()
|
||||
mixed_frame["foo"] = "bar"
|
||||
|
||||
begin_index = float_frame.index[:5]
|
||||
end_index = float_frame.index[5:]
|
||||
|
||||
begin_frame = float_frame.reindex(begin_index)
|
||||
end_frame = float_frame.reindex(end_index)
|
||||
|
||||
appended = begin_frame._append(end_frame)
|
||||
tm.assert_almost_equal(appended["A"], float_frame["A"])
|
||||
|
||||
del end_frame["A"]
|
||||
partial_appended = begin_frame._append(end_frame, sort=sort)
|
||||
assert "A" in partial_appended
|
||||
|
||||
partial_appended = end_frame._append(begin_frame, sort=sort)
|
||||
assert "A" in partial_appended
|
||||
|
||||
# mixed type handling
|
||||
appended = mixed_frame[:5]._append(mixed_frame[5:])
|
||||
tm.assert_frame_equal(appended, mixed_frame)
|
||||
|
||||
# what to test here
|
||||
mixed_appended = mixed_frame[:5]._append(float_frame[5:], sort=sort)
|
||||
mixed_appended2 = float_frame[:5]._append(mixed_frame[5:], sort=sort)
|
||||
|
||||
# all equal except 'foo' column
|
||||
tm.assert_frame_equal(
|
||||
mixed_appended.reindex(columns=["A", "B", "C", "D"]),
|
||||
mixed_appended2.reindex(columns=["A", "B", "C", "D"]),
|
||||
)
|
||||
|
||||
def test_append_empty(self, float_frame):
|
||||
empty = DataFrame()
|
||||
|
||||
appended = float_frame._append(empty)
|
||||
tm.assert_frame_equal(float_frame, appended)
|
||||
assert appended is not float_frame
|
||||
|
||||
appended = empty._append(float_frame)
|
||||
tm.assert_frame_equal(float_frame, appended)
|
||||
assert appended is not float_frame
|
||||
|
||||
def test_append_overlap_raises(self, float_frame):
|
||||
msg = "Indexes have overlapping values"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
float_frame._append(float_frame, verify_integrity=True)
|
||||
|
||||
def test_append_new_columns(self):
|
||||
# see gh-6129: new columns
|
||||
df = DataFrame({"a": {"x": 1, "y": 2}, "b": {"x": 3, "y": 4}})
|
||||
row = Series([5, 6, 7], index=["a", "b", "c"], name="z")
|
||||
expected = DataFrame(
|
||||
{
|
||||
"a": {"x": 1, "y": 2, "z": 5},
|
||||
"b": {"x": 3, "y": 4, "z": 6},
|
||||
"c": {"z": 7},
|
||||
}
|
||||
)
|
||||
result = df._append(row)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_append_length0_frame(self, sort):
|
||||
df = DataFrame(columns=["A", "B", "C"])
|
||||
df3 = DataFrame(index=[0, 1], columns=["A", "B"])
|
||||
df5 = df._append(df3, sort=sort)
|
||||
|
||||
expected = DataFrame(index=[0, 1], columns=["A", "B", "C"])
|
||||
tm.assert_frame_equal(df5, expected)
|
||||
|
||||
def test_append_records(self):
|
||||
arr1 = np.zeros((2,), dtype=("i4,f4,S10"))
|
||||
arr1[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")]
|
||||
|
||||
arr2 = np.zeros((3,), dtype=("i4,f4,S10"))
|
||||
arr2[:] = [(3, 4.0, "foo"), (5, 6.0, "bar"), (7.0, 8.0, "baz")]
|
||||
|
||||
df1 = DataFrame(arr1)
|
||||
df2 = DataFrame(arr2)
|
||||
|
||||
result = df1._append(df2, ignore_index=True)
|
||||
expected = DataFrame(np.concatenate((arr1, arr2)))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# rewrite sort fixture, since we also want to test default of None
|
||||
def test_append_sorts(self, sort):
|
||||
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
|
||||
df2 = DataFrame({"a": [1, 2], "c": [3, 4]}, index=[2, 3])
|
||||
|
||||
result = df1._append(df2, sort=sort)
|
||||
|
||||
# for None / True
|
||||
expected = DataFrame(
|
||||
{"b": [1, 2, None, None], "a": [1, 2, 1, 2], "c": [None, None, 3, 4]},
|
||||
columns=["a", "b", "c"],
|
||||
)
|
||||
if sort is False:
|
||||
expected = expected[["b", "a", "c"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_append_different_columns(self, sort):
|
||||
df = DataFrame(
|
||||
{
|
||||
"bools": np.random.default_rng(2).standard_normal(10) > 0,
|
||||
"ints": np.random.default_rng(2).integers(0, 10, 10),
|
||||
"floats": np.random.default_rng(2).standard_normal(10),
|
||||
"strings": ["foo", "bar"] * 5,
|
||||
}
|
||||
)
|
||||
|
||||
a = df[:5].loc[:, ["bools", "ints", "floats"]]
|
||||
b = df[5:].loc[:, ["strings", "ints", "floats"]]
|
||||
|
||||
appended = a._append(b, sort=sort)
|
||||
assert isna(appended["strings"][0:4]).all()
|
||||
assert isna(appended["bools"][5:]).all()
|
||||
|
||||
def test_append_many(self, sort, float_frame):
|
||||
chunks = [
|
||||
float_frame[:5],
|
||||
float_frame[5:10],
|
||||
float_frame[10:15],
|
||||
float_frame[15:],
|
||||
]
|
||||
|
||||
result = chunks[0]._append(chunks[1:])
|
||||
tm.assert_frame_equal(result, float_frame)
|
||||
|
||||
chunks[-1] = chunks[-1].copy()
|
||||
chunks[-1]["foo"] = "bar"
|
||||
result = chunks[0]._append(chunks[1:], sort=sort)
|
||||
tm.assert_frame_equal(result.loc[:, float_frame.columns], float_frame)
|
||||
assert (result["foo"][15:] == "bar").all()
|
||||
assert result["foo"][:15].isna().all()
|
||||
|
||||
def test_append_preserve_index_name(self):
|
||||
# #980
|
||||
df1 = DataFrame(columns=["A", "B", "C"])
|
||||
df1 = df1.set_index(["A"])
|
||||
df2 = DataFrame(data=[[1, 4, 7], [2, 5, 8], [3, 6, 9]], columns=["A", "B", "C"])
|
||||
df2 = df2.set_index(["A"])
|
||||
|
||||
msg = "The behavior of array concatenation with empty entries is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
result = df1._append(df2)
|
||||
assert result.index.name == "A"
|
||||
|
||||
indexes_can_append = [
|
||||
pd.RangeIndex(3),
|
||||
Index([4, 5, 6]),
|
||||
Index([4.5, 5.5, 6.5]),
|
||||
Index(list("abc")),
|
||||
pd.CategoricalIndex("A B C".split()),
|
||||
pd.CategoricalIndex("D E F".split(), ordered=True),
|
||||
pd.IntervalIndex.from_breaks([7, 8, 9, 10]),
|
||||
pd.DatetimeIndex(
|
||||
[
|
||||
dt.datetime(2013, 1, 3, 0, 0),
|
||||
dt.datetime(2013, 1, 3, 6, 10),
|
||||
dt.datetime(2013, 1, 3, 7, 12),
|
||||
]
|
||||
),
|
||||
pd.MultiIndex.from_arrays(["A B C".split(), "D E F".split()]),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index", indexes_can_append, ids=lambda x: type(x).__name__
|
||||
)
|
||||
def test_append_same_columns_type(self, index):
|
||||
# GH18359
|
||||
|
||||
# df wider than ser
|
||||
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=index)
|
||||
ser_index = index[:2]
|
||||
ser = Series([7, 8], index=ser_index, name=2)
|
||||
result = df._append(ser)
|
||||
expected = DataFrame(
|
||||
[[1, 2, 3.0], [4, 5, 6], [7, 8, np.nan]], index=[0, 1, 2], columns=index
|
||||
)
|
||||
# integer dtype is preserved for columns present in ser.index
|
||||
assert expected.dtypes.iloc[0].kind == "i"
|
||||
assert expected.dtypes.iloc[1].kind == "i"
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# ser wider than df
|
||||
ser_index = index
|
||||
index = index[:2]
|
||||
df = DataFrame([[1, 2], [4, 5]], columns=index)
|
||||
ser = Series([7, 8, 9], index=ser_index, name=2)
|
||||
result = df._append(ser)
|
||||
expected = DataFrame(
|
||||
[[1, 2, np.nan], [4, 5, np.nan], [7, 8, 9]],
|
||||
index=[0, 1, 2],
|
||||
columns=ser_index,
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"df_columns, series_index",
|
||||
combinations(indexes_can_append, r=2),
|
||||
ids=lambda x: type(x).__name__,
|
||||
)
|
||||
def test_append_different_columns_types(self, df_columns, series_index):
|
||||
# GH18359
|
||||
# See also test 'test_append_different_columns_types_raises' below
|
||||
# for errors raised when appending
|
||||
|
||||
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=df_columns)
|
||||
ser = Series([7, 8, 9], index=series_index, name=2)
|
||||
|
||||
result = df._append(ser)
|
||||
idx_diff = ser.index.difference(df_columns)
|
||||
combined_columns = Index(df_columns.tolist()).append(idx_diff)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[1.0, 2.0, 3.0, np.nan, np.nan, np.nan],
|
||||
[4, 5, 6, np.nan, np.nan, np.nan],
|
||||
[np.nan, np.nan, np.nan, 7, 8, 9],
|
||||
],
|
||||
index=[0, 1, 2],
|
||||
columns=combined_columns,
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_append_dtype_coerce(self, sort):
|
||||
# GH 4993
|
||||
# appending with datetime will incorrectly convert datetime64
|
||||
|
||||
df1 = DataFrame(
|
||||
index=[1, 2],
|
||||
data=[dt.datetime(2013, 1, 1, 0, 0), dt.datetime(2013, 1, 2, 0, 0)],
|
||||
columns=["start_time"],
|
||||
)
|
||||
df2 = DataFrame(
|
||||
index=[4, 5],
|
||||
data=[
|
||||
[dt.datetime(2013, 1, 3, 0, 0), dt.datetime(2013, 1, 3, 6, 10)],
|
||||
[dt.datetime(2013, 1, 4, 0, 0), dt.datetime(2013, 1, 4, 7, 10)],
|
||||
],
|
||||
columns=["start_time", "end_time"],
|
||||
)
|
||||
|
||||
expected = concat(
|
||||
[
|
||||
Series(
|
||||
[
|
||||
pd.NaT,
|
||||
pd.NaT,
|
||||
dt.datetime(2013, 1, 3, 6, 10),
|
||||
dt.datetime(2013, 1, 4, 7, 10),
|
||||
],
|
||||
name="end_time",
|
||||
),
|
||||
Series(
|
||||
[
|
||||
dt.datetime(2013, 1, 1, 0, 0),
|
||||
dt.datetime(2013, 1, 2, 0, 0),
|
||||
dt.datetime(2013, 1, 3, 0, 0),
|
||||
dt.datetime(2013, 1, 4, 0, 0),
|
||||
],
|
||||
name="start_time",
|
||||
),
|
||||
],
|
||||
axis=1,
|
||||
sort=sort,
|
||||
)
|
||||
result = df1._append(df2, ignore_index=True, sort=sort)
|
||||
if sort:
|
||||
expected = expected[["end_time", "start_time"]]
|
||||
else:
|
||||
expected = expected[["start_time", "end_time"]]
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_append_missing_column_proper_upcast(self, sort):
|
||||
df1 = DataFrame({"A": np.array([1, 2, 3, 4], dtype="i8")})
|
||||
df2 = DataFrame({"B": np.array([True, False, True, False], dtype=bool)})
|
||||
|
||||
appended = df1._append(df2, ignore_index=True, sort=sort)
|
||||
assert appended["A"].dtype == "f8"
|
||||
assert appended["B"].dtype == "O"
|
||||
|
||||
def test_append_empty_frame_to_series_with_dateutil_tz(self):
|
||||
# GH 23682
|
||||
date = Timestamp("2018-10-24 07:30:00", tz=dateutil.tz.tzutc())
|
||||
ser = Series({"a": 1.0, "b": 2.0, "date": date})
|
||||
df = DataFrame(columns=["c", "d"])
|
||||
result_a = df._append(ser, ignore_index=True)
|
||||
expected = DataFrame(
|
||||
[[np.nan, np.nan, 1.0, 2.0, date]], columns=["c", "d", "a", "b", "date"]
|
||||
)
|
||||
# These columns get cast to object after append
|
||||
expected["c"] = expected["c"].astype(object)
|
||||
expected["d"] = expected["d"].astype(object)
|
||||
tm.assert_frame_equal(result_a, expected)
|
||||
|
||||
expected = DataFrame(
|
||||
[[np.nan, np.nan, 1.0, 2.0, date]] * 2, columns=["c", "d", "a", "b", "date"]
|
||||
)
|
||||
expected["c"] = expected["c"].astype(object)
|
||||
expected["d"] = expected["d"].astype(object)
|
||||
result_b = result_a._append(ser, ignore_index=True)
|
||||
tm.assert_frame_equal(result_b, expected)
|
||||
|
||||
result = df._append([ser, ser], ignore_index=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_append_empty_tz_frame_with_datetime64ns(self, using_array_manager):
|
||||
# https://github.com/pandas-dev/pandas/issues/35460
|
||||
df = DataFrame(columns=["a"]).astype("datetime64[ns, UTC]")
|
||||
|
||||
# pd.NaT gets inferred as tz-naive, so append result is tz-naive
|
||||
result = df._append({"a": pd.NaT}, ignore_index=True)
|
||||
if using_array_manager:
|
||||
expected = DataFrame({"a": [pd.NaT]}, dtype=object)
|
||||
else:
|
||||
expected = DataFrame({"a": [np.nan]}, dtype=object)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# also test with typed value to append
|
||||
df = DataFrame(columns=["a"]).astype("datetime64[ns, UTC]")
|
||||
other = Series({"a": pd.NaT}, dtype="datetime64[ns]")
|
||||
result = df._append(other, ignore_index=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# mismatched tz
|
||||
other = Series({"a": pd.NaT}, dtype="datetime64[ns, US/Pacific]")
|
||||
result = df._append(other, ignore_index=True)
|
||||
expected = DataFrame({"a": [pd.NaT]}).astype(object)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype_str", ["datetime64[ns, UTC]", "datetime64[ns]", "Int64", "int64"]
|
||||
)
|
||||
@pytest.mark.parametrize("val", [1, "NaT"])
|
||||
def test_append_empty_frame_with_timedelta64ns_nat(
|
||||
self, dtype_str, val, using_array_manager
|
||||
):
|
||||
# https://github.com/pandas-dev/pandas/issues/35460
|
||||
df = DataFrame(columns=["a"]).astype(dtype_str)
|
||||
|
||||
other = DataFrame({"a": [np.timedelta64(val, "ns")]})
|
||||
result = df._append(other, ignore_index=True)
|
||||
|
||||
expected = other.astype(object)
|
||||
if isinstance(val, str) and dtype_str != "int64" and not using_array_manager:
|
||||
# TODO: expected used to be `other.astype(object)` which is a more
|
||||
# reasonable result. This was changed when tightening
|
||||
# assert_frame_equal's treatment of mismatched NAs to match the
|
||||
# existing behavior.
|
||||
expected = DataFrame({"a": [np.nan]}, dtype=object)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype_str", ["datetime64[ns, UTC]", "datetime64[ns]", "Int64", "int64"]
|
||||
)
|
||||
@pytest.mark.parametrize("val", [1, "NaT"])
|
||||
def test_append_frame_with_timedelta64ns_nat(self, dtype_str, val):
|
||||
# https://github.com/pandas-dev/pandas/issues/35460
|
||||
df = DataFrame({"a": pd.array([1], dtype=dtype_str)})
|
||||
|
||||
other = DataFrame({"a": [np.timedelta64(val, "ns")]})
|
||||
result = df._append(other, ignore_index=True)
|
||||
|
||||
expected = DataFrame({"a": [df.iloc[0, 0], other.iloc[0, 0]]}, dtype=object)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,751 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=list(
|
||||
{
|
||||
"bool": [True, False, True],
|
||||
"int64": [1, 2, 3],
|
||||
"float64": [1.1, np.nan, 3.3],
|
||||
"category": Categorical(["X", "Y", "Z"]),
|
||||
"object": ["a", "b", "c"],
|
||||
"datetime64[ns]": [
|
||||
pd.Timestamp("2011-01-01"),
|
||||
pd.Timestamp("2011-01-02"),
|
||||
pd.Timestamp("2011-01-03"),
|
||||
],
|
||||
"datetime64[ns, US/Eastern]": [
|
||||
pd.Timestamp("2011-01-01", tz="US/Eastern"),
|
||||
pd.Timestamp("2011-01-02", tz="US/Eastern"),
|
||||
pd.Timestamp("2011-01-03", tz="US/Eastern"),
|
||||
],
|
||||
"timedelta64[ns]": [
|
||||
pd.Timedelta("1 days"),
|
||||
pd.Timedelta("2 days"),
|
||||
pd.Timedelta("3 days"),
|
||||
],
|
||||
"period[M]": [
|
||||
pd.Period("2011-01", freq="M"),
|
||||
pd.Period("2011-02", freq="M"),
|
||||
pd.Period("2011-03", freq="M"),
|
||||
],
|
||||
}.items()
|
||||
)
|
||||
)
|
||||
def item(request):
|
||||
key, data = request.param
|
||||
return key, data
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def item2(item):
|
||||
return item
|
||||
|
||||
|
||||
class TestConcatAppendCommon:
|
||||
"""
|
||||
Test common dtype coercion rules between concat and append.
|
||||
"""
|
||||
|
||||
def test_dtypes(self, item, index_or_series):
|
||||
# to confirm test case covers intended dtypes
|
||||
typ, vals = item
|
||||
obj = index_or_series(vals)
|
||||
if isinstance(obj, Index):
|
||||
assert obj.dtype == typ
|
||||
elif isinstance(obj, Series):
|
||||
if typ.startswith("period"):
|
||||
assert obj.dtype == "Period[M]"
|
||||
else:
|
||||
assert obj.dtype == typ
|
||||
|
||||
def test_concatlike_same_dtypes(self, item):
|
||||
# GH 13660
|
||||
typ1, vals1 = item
|
||||
|
||||
vals2 = vals1
|
||||
vals3 = vals1
|
||||
|
||||
if typ1 == "category":
|
||||
exp_data = Categorical(list(vals1) + list(vals2))
|
||||
exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3))
|
||||
else:
|
||||
exp_data = vals1 + vals2
|
||||
exp_data3 = vals1 + vals2 + vals3
|
||||
|
||||
# ----- Index ----- #
|
||||
|
||||
# index.append
|
||||
res = Index(vals1).append(Index(vals2))
|
||||
exp = Index(exp_data)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
# 3 elements
|
||||
res = Index(vals1).append([Index(vals2), Index(vals3)])
|
||||
exp = Index(exp_data3)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
# index.append name mismatch
|
||||
i1 = Index(vals1, name="x")
|
||||
i2 = Index(vals2, name="y")
|
||||
res = i1.append(i2)
|
||||
exp = Index(exp_data)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
# index.append name match
|
||||
i1 = Index(vals1, name="x")
|
||||
i2 = Index(vals2, name="x")
|
||||
res = i1.append(i2)
|
||||
exp = Index(exp_data, name="x")
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
# cannot append non-index
|
||||
with pytest.raises(TypeError, match="all inputs must be Index"):
|
||||
Index(vals1).append(vals2)
|
||||
|
||||
with pytest.raises(TypeError, match="all inputs must be Index"):
|
||||
Index(vals1).append([Index(vals2), vals3])
|
||||
|
||||
# ----- Series ----- #
|
||||
|
||||
# series.append
|
||||
res = Series(vals1)._append(Series(vals2), ignore_index=True)
|
||||
exp = Series(exp_data)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
# concat
|
||||
res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
# 3 elements
|
||||
res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True)
|
||||
exp = Series(exp_data3)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
res = pd.concat(
|
||||
[Series(vals1), Series(vals2), Series(vals3)],
|
||||
ignore_index=True,
|
||||
)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
# name mismatch
|
||||
s1 = Series(vals1, name="x")
|
||||
s2 = Series(vals2, name="y")
|
||||
res = s1._append(s2, ignore_index=True)
|
||||
exp = Series(exp_data)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
res = pd.concat([s1, s2], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
# name match
|
||||
s1 = Series(vals1, name="x")
|
||||
s2 = Series(vals2, name="x")
|
||||
res = s1._append(s2, ignore_index=True)
|
||||
exp = Series(exp_data, name="x")
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
res = pd.concat([s1, s2], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
# cannot append non-index
|
||||
msg = (
|
||||
r"cannot concatenate object of type '.+'; "
|
||||
"only Series and DataFrame objs are valid"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
Series(vals1)._append(vals2)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
Series(vals1)._append([Series(vals2), vals3])
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.concat([Series(vals1), vals2])
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.concat([Series(vals1), Series(vals2), vals3])
|
||||
|
||||
def test_concatlike_dtypes_coercion(self, item, item2, request):
|
||||
# GH 13660
|
||||
typ1, vals1 = item
|
||||
typ2, vals2 = item2
|
||||
|
||||
vals3 = vals2
|
||||
|
||||
# basically infer
|
||||
exp_index_dtype = None
|
||||
exp_series_dtype = None
|
||||
|
||||
if typ1 == typ2:
|
||||
pytest.skip("same dtype is tested in test_concatlike_same_dtypes")
|
||||
elif typ1 == "category" or typ2 == "category":
|
||||
pytest.skip("categorical type tested elsewhere")
|
||||
|
||||
# specify expected dtype
|
||||
if typ1 == "bool" and typ2 in ("int64", "float64"):
|
||||
# series coerces to numeric based on numpy rule
|
||||
# index doesn't because bool is object dtype
|
||||
exp_series_dtype = typ2
|
||||
mark = pytest.mark.xfail(reason="GH#39187 casting to object")
|
||||
request.node.add_marker(mark)
|
||||
elif typ2 == "bool" and typ1 in ("int64", "float64"):
|
||||
exp_series_dtype = typ1
|
||||
mark = pytest.mark.xfail(reason="GH#39187 casting to object")
|
||||
request.node.add_marker(mark)
|
||||
elif typ1 in {"datetime64[ns, US/Eastern]", "timedelta64[ns]"} or typ2 in {
|
||||
"datetime64[ns, US/Eastern]",
|
||||
"timedelta64[ns]",
|
||||
}:
|
||||
exp_index_dtype = object
|
||||
exp_series_dtype = object
|
||||
|
||||
exp_data = vals1 + vals2
|
||||
exp_data3 = vals1 + vals2 + vals3
|
||||
|
||||
# ----- Index ----- #
|
||||
|
||||
# index.append
|
||||
# GH#39817
|
||||
res = Index(vals1).append(Index(vals2))
|
||||
exp = Index(exp_data, dtype=exp_index_dtype)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
# 3 elements
|
||||
res = Index(vals1).append([Index(vals2), Index(vals3)])
|
||||
exp = Index(exp_data3, dtype=exp_index_dtype)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
# ----- Series ----- #
|
||||
|
||||
# series._append
|
||||
# GH#39817
|
||||
res = Series(vals1)._append(Series(vals2), ignore_index=True)
|
||||
exp = Series(exp_data, dtype=exp_series_dtype)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
# concat
|
||||
# GH#39817
|
||||
res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp, check_index_type=True)
|
||||
|
||||
# 3 elements
|
||||
# GH#39817
|
||||
res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True)
|
||||
exp = Series(exp_data3, dtype=exp_series_dtype)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
# GH#39817
|
||||
res = pd.concat(
|
||||
[Series(vals1), Series(vals2), Series(vals3)],
|
||||
ignore_index=True,
|
||||
)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
def test_concatlike_common_coerce_to_pandas_object(self):
|
||||
# GH 13626
|
||||
# result must be Timestamp/Timedelta, not datetime.datetime/timedelta
|
||||
dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"])
|
||||
tdi = pd.TimedeltaIndex(["1 days", "2 days"])
|
||||
|
||||
exp = Index(
|
||||
[
|
||||
pd.Timestamp("2011-01-01"),
|
||||
pd.Timestamp("2011-01-02"),
|
||||
pd.Timedelta("1 days"),
|
||||
pd.Timedelta("2 days"),
|
||||
]
|
||||
)
|
||||
|
||||
res = dti.append(tdi)
|
||||
tm.assert_index_equal(res, exp)
|
||||
assert isinstance(res[0], pd.Timestamp)
|
||||
assert isinstance(res[-1], pd.Timedelta)
|
||||
|
||||
dts = Series(dti)
|
||||
tds = Series(tdi)
|
||||
res = dts._append(tds)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
assert isinstance(res.iloc[0], pd.Timestamp)
|
||||
assert isinstance(res.iloc[-1], pd.Timedelta)
|
||||
|
||||
res = pd.concat([dts, tds])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
assert isinstance(res.iloc[0], pd.Timestamp)
|
||||
assert isinstance(res.iloc[-1], pd.Timedelta)
|
||||
|
||||
def test_concatlike_datetimetz(self, tz_aware_fixture):
|
||||
tz = tz_aware_fixture
|
||||
# GH 7795
|
||||
dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz)
|
||||
dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz)
|
||||
|
||||
exp = pd.DatetimeIndex(
|
||||
["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz
|
||||
)
|
||||
|
||||
res = dti1.append(dti2)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
dts1 = Series(dti1)
|
||||
dts2 = Series(dti2)
|
||||
res = dts1._append(dts2)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([dts1, dts2])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
@pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"])
|
||||
def test_concatlike_datetimetz_short(self, tz):
|
||||
# GH#7795
|
||||
ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz)
|
||||
ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz)
|
||||
df1 = DataFrame(0, index=ix1, columns=["A", "B"])
|
||||
df2 = DataFrame(0, index=ix2, columns=["A", "B"])
|
||||
|
||||
exp_idx = pd.DatetimeIndex(
|
||||
["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"],
|
||||
tz=tz,
|
||||
)
|
||||
exp = DataFrame(0, index=exp_idx, columns=["A", "B"])
|
||||
|
||||
tm.assert_frame_equal(df1._append(df2), exp)
|
||||
tm.assert_frame_equal(pd.concat([df1, df2]), exp)
|
||||
|
||||
def test_concatlike_datetimetz_to_object(self, tz_aware_fixture):
|
||||
tz = tz_aware_fixture
|
||||
# GH 13660
|
||||
|
||||
# different tz coerces to object
|
||||
dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz)
|
||||
dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"])
|
||||
|
||||
exp = Index(
|
||||
[
|
||||
pd.Timestamp("2011-01-01", tz=tz),
|
||||
pd.Timestamp("2011-01-02", tz=tz),
|
||||
pd.Timestamp("2012-01-01"),
|
||||
pd.Timestamp("2012-01-02"),
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
|
||||
res = dti1.append(dti2)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
dts1 = Series(dti1)
|
||||
dts2 = Series(dti2)
|
||||
res = dts1._append(dts2)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([dts1, dts2])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
# different tz
|
||||
dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific")
|
||||
|
||||
exp = Index(
|
||||
[
|
||||
pd.Timestamp("2011-01-01", tz=tz),
|
||||
pd.Timestamp("2011-01-02", tz=tz),
|
||||
pd.Timestamp("2012-01-01", tz="US/Pacific"),
|
||||
pd.Timestamp("2012-01-02", tz="US/Pacific"),
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
|
||||
res = dti1.append(dti3)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
dts1 = Series(dti1)
|
||||
dts3 = Series(dti3)
|
||||
res = dts1._append(dts3)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([dts1, dts3])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
def test_concatlike_common_period(self):
|
||||
# GH 13660
|
||||
pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
|
||||
pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M")
|
||||
|
||||
exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M")
|
||||
|
||||
res = pi1.append(pi2)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
ps1 = Series(pi1)
|
||||
ps2 = Series(pi2)
|
||||
res = ps1._append(ps2)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([ps1, ps2])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
def test_concatlike_common_period_diff_freq_to_object(self):
|
||||
# GH 13221
|
||||
pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
|
||||
pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D")
|
||||
|
||||
exp = Index(
|
||||
[
|
||||
pd.Period("2011-01", freq="M"),
|
||||
pd.Period("2011-02", freq="M"),
|
||||
pd.Period("2012-01-01", freq="D"),
|
||||
pd.Period("2012-02-01", freq="D"),
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
|
||||
res = pi1.append(pi2)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
ps1 = Series(pi1)
|
||||
ps2 = Series(pi2)
|
||||
res = ps1._append(ps2)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([ps1, ps2])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
def test_concatlike_common_period_mixed_dt_to_object(self):
|
||||
# GH 13221
|
||||
# different datetimelike
|
||||
pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
|
||||
tdi = pd.TimedeltaIndex(["1 days", "2 days"])
|
||||
exp = Index(
|
||||
[
|
||||
pd.Period("2011-01", freq="M"),
|
||||
pd.Period("2011-02", freq="M"),
|
||||
pd.Timedelta("1 days"),
|
||||
pd.Timedelta("2 days"),
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
|
||||
res = pi1.append(tdi)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
ps1 = Series(pi1)
|
||||
tds = Series(tdi)
|
||||
res = ps1._append(tds)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([ps1, tds])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
# inverse
|
||||
exp = Index(
|
||||
[
|
||||
pd.Timedelta("1 days"),
|
||||
pd.Timedelta("2 days"),
|
||||
pd.Period("2011-01", freq="M"),
|
||||
pd.Period("2011-02", freq="M"),
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
|
||||
res = tdi.append(pi1)
|
||||
tm.assert_index_equal(res, exp)
|
||||
|
||||
ps1 = Series(pi1)
|
||||
tds = Series(tdi)
|
||||
res = tds._append(ps1)
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
res = pd.concat([tds, ps1])
|
||||
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
||||
|
||||
def test_concat_categorical(self):
|
||||
# GH 13524
|
||||
|
||||
# same categories -> category
|
||||
s1 = Series([1, 2, np.nan], dtype="category")
|
||||
s2 = Series([2, 1, 2], dtype="category")
|
||||
|
||||
exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category")
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
# partially different categories => not-category
|
||||
s1 = Series([3, 2], dtype="category")
|
||||
s2 = Series([2, 1], dtype="category")
|
||||
|
||||
exp = Series([3, 2, 2, 1])
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
# completely different categories (same dtype) => not-category
|
||||
s1 = Series([10, 11, np.nan], dtype="category")
|
||||
s2 = Series([np.nan, 1, 3, 2], dtype="category")
|
||||
|
||||
exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64)
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
def test_union_categorical_same_categories_different_order(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/19096
|
||||
a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"]))
|
||||
b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"]))
|
||||
result = pd.concat([a, b], ignore_index=True)
|
||||
expected = Series(
|
||||
Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"])
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_categorical_coercion(self):
|
||||
# GH 13524
|
||||
|
||||
# category + not-category => not-category
|
||||
s1 = Series([1, 2, np.nan], dtype="category")
|
||||
s2 = Series([2, 1, 2])
|
||||
|
||||
exp = Series([1, 2, np.nan, 2, 1, 2], dtype=np.float64)
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
# result shouldn't be affected by 1st elem dtype
|
||||
exp = Series([2, 1, 2, 1, 2, np.nan], dtype=np.float64)
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
# all values are not in category => not-category
|
||||
s1 = Series([3, 2], dtype="category")
|
||||
s2 = Series([2, 1])
|
||||
|
||||
exp = Series([3, 2, 2, 1])
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
exp = Series([2, 1, 3, 2])
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
# completely different categories => not-category
|
||||
s1 = Series([10, 11, np.nan], dtype="category")
|
||||
s2 = Series([1, 3, 2])
|
||||
|
||||
exp = Series([10, 11, np.nan, 1, 3, 2], dtype=np.float64)
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
exp = Series([1, 3, 2, 10, 11, np.nan], dtype=np.float64)
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
# different dtype => not-category
|
||||
s1 = Series([10, 11, np.nan], dtype="category")
|
||||
s2 = Series(["a", "b", "c"])
|
||||
|
||||
exp = Series([10, 11, np.nan, "a", "b", "c"])
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
exp = Series(["a", "b", "c", 10, 11, np.nan])
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
# if normal series only contains NaN-likes => not-category
|
||||
s1 = Series([10, 11], dtype="category")
|
||||
s2 = Series([np.nan, np.nan, np.nan])
|
||||
|
||||
exp = Series([10, 11, np.nan, np.nan, np.nan])
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
exp = Series([np.nan, np.nan, np.nan, 10, 11])
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
def test_concat_categorical_3elem_coercion(self):
|
||||
# GH 13524
|
||||
|
||||
# mixed dtypes => not-category
|
||||
s1 = Series([1, 2, np.nan], dtype="category")
|
||||
s2 = Series([2, 1, 2], dtype="category")
|
||||
s3 = Series([1, 2, 1, 2, np.nan])
|
||||
|
||||
exp = Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan], dtype="float")
|
||||
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp)
|
||||
|
||||
exp = Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2], dtype="float")
|
||||
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp)
|
||||
|
||||
# values are all in either category => not-category
|
||||
s1 = Series([4, 5, 6], dtype="category")
|
||||
s2 = Series([1, 2, 3], dtype="category")
|
||||
s3 = Series([1, 3, 4])
|
||||
|
||||
exp = Series([4, 5, 6, 1, 2, 3, 1, 3, 4])
|
||||
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp)
|
||||
|
||||
exp = Series([1, 3, 4, 4, 5, 6, 1, 2, 3])
|
||||
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp)
|
||||
|
||||
# values are all in either category => not-category
|
||||
s1 = Series([4, 5, 6], dtype="category")
|
||||
s2 = Series([1, 2, 3], dtype="category")
|
||||
s3 = Series([10, 11, 12])
|
||||
|
||||
exp = Series([4, 5, 6, 1, 2, 3, 10, 11, 12])
|
||||
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp)
|
||||
|
||||
exp = Series([10, 11, 12, 4, 5, 6, 1, 2, 3])
|
||||
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp)
|
||||
|
||||
def test_concat_categorical_multi_coercion(self):
|
||||
# GH 13524
|
||||
|
||||
s1 = Series([1, 3], dtype="category")
|
||||
s2 = Series([3, 4], dtype="category")
|
||||
s3 = Series([2, 3])
|
||||
s4 = Series([2, 2], dtype="category")
|
||||
s5 = Series([1, np.nan])
|
||||
s6 = Series([1, 3, 2], dtype="category")
|
||||
|
||||
# mixed dtype, values are all in categories => not-category
|
||||
exp = Series([1, 3, 3, 4, 2, 3, 2, 2, 1, np.nan, 1, 3, 2])
|
||||
res = pd.concat([s1, s2, s3, s4, s5, s6], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp)
|
||||
res = s1._append([s2, s3, s4, s5, s6], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
exp = Series([1, 3, 2, 1, np.nan, 2, 2, 2, 3, 3, 4, 1, 3])
|
||||
res = pd.concat([s6, s5, s4, s3, s2, s1], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp)
|
||||
res = s6._append([s5, s4, s3, s2, s1], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
def test_concat_categorical_ordered(self):
|
||||
# GH 13524
|
||||
|
||||
s1 = Series(Categorical([1, 2, np.nan], ordered=True))
|
||||
s2 = Series(Categorical([2, 1, 2], ordered=True))
|
||||
|
||||
exp = Series(Categorical([1, 2, np.nan, 2, 1, 2], ordered=True))
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
exp = Series(Categorical([1, 2, np.nan, 2, 1, 2, 1, 2, np.nan], ordered=True))
|
||||
tm.assert_series_equal(pd.concat([s1, s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append([s2, s1], ignore_index=True), exp)
|
||||
|
||||
def test_concat_categorical_coercion_nan(self):
|
||||
# GH 13524
|
||||
|
||||
# some edge cases
|
||||
# category + not-category => not category
|
||||
s1 = Series(np.array([np.nan, np.nan], dtype=np.float64), dtype="category")
|
||||
s2 = Series([np.nan, 1])
|
||||
|
||||
exp = Series([np.nan, np.nan, np.nan, 1])
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
s1 = Series([1, np.nan], dtype="category")
|
||||
s2 = Series([np.nan, np.nan])
|
||||
|
||||
exp = Series([1, np.nan, np.nan, np.nan], dtype="float")
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
# mixed dtype, all nan-likes => not-category
|
||||
s1 = Series([np.nan, np.nan], dtype="category")
|
||||
s2 = Series([np.nan, np.nan])
|
||||
|
||||
exp = Series([np.nan, np.nan, np.nan, np.nan])
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
# all category nan-likes => category
|
||||
s1 = Series([np.nan, np.nan], dtype="category")
|
||||
s2 = Series([np.nan, np.nan], dtype="category")
|
||||
|
||||
exp = Series([np.nan, np.nan, np.nan, np.nan], dtype="category")
|
||||
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
def test_concat_categorical_empty(self):
|
||||
# GH 13524
|
||||
|
||||
s1 = Series([], dtype="category")
|
||||
s2 = Series([1, 2], dtype="category")
|
||||
|
||||
msg = "The behavior of array concatenation with empty entries is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), s2)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), s2)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), s2)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), s2)
|
||||
|
||||
s1 = Series([], dtype="category")
|
||||
s2 = Series([], dtype="category")
|
||||
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), s2)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), s2)
|
||||
|
||||
s1 = Series([], dtype="category")
|
||||
s2 = Series([], dtype="object")
|
||||
|
||||
# different dtype => not-category
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), s2)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), s2)
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), s2)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), s2)
|
||||
|
||||
s1 = Series([], dtype="category")
|
||||
s2 = Series([np.nan, np.nan])
|
||||
|
||||
# empty Series is ignored
|
||||
exp = Series([np.nan, np.nan])
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
||||
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
||||
|
||||
def test_categorical_concat_append(self):
|
||||
cat = Categorical(["a", "b"], categories=["a", "b"])
|
||||
vals = [1, 2]
|
||||
df = DataFrame({"cats": cat, "vals": vals})
|
||||
cat2 = Categorical(["a", "b", "a", "b"], categories=["a", "b"])
|
||||
vals2 = [1, 2, 1, 2]
|
||||
exp = DataFrame({"cats": cat2, "vals": vals2}, index=Index([0, 1, 0, 1]))
|
||||
|
||||
tm.assert_frame_equal(pd.concat([df, df]), exp)
|
||||
tm.assert_frame_equal(df._append(df), exp)
|
||||
|
||||
# GH 13524 can concat different categories
|
||||
cat3 = Categorical(["a", "b"], categories=["a", "b", "c"])
|
||||
vals3 = [1, 2]
|
||||
df_different_categories = DataFrame({"cats": cat3, "vals": vals3})
|
||||
|
||||
res = pd.concat([df, df_different_categories], ignore_index=True)
|
||||
exp = DataFrame({"cats": list("abab"), "vals": [1, 2, 1, 2]})
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
res = df._append(df_different_categories, ignore_index=True)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
|
@ -0,0 +1,271 @@
|
|||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.core.dtypes.dtypes import CategoricalDtype
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestCategoricalConcat:
|
||||
def test_categorical_concat(self, sort):
|
||||
# See GH 10177
|
||||
df1 = DataFrame(
|
||||
np.arange(18, dtype="int64").reshape(6, 3), columns=["a", "b", "c"]
|
||||
)
|
||||
|
||||
df2 = DataFrame(np.arange(14, dtype="int64").reshape(7, 2), columns=["a", "c"])
|
||||
|
||||
cat_values = ["one", "one", "two", "one", "two", "two", "one"]
|
||||
df2["h"] = Series(Categorical(cat_values))
|
||||
|
||||
res = pd.concat((df1, df2), axis=0, ignore_index=True, sort=sort)
|
||||
exp = DataFrame(
|
||||
{
|
||||
"a": [0, 3, 6, 9, 12, 15, 0, 2, 4, 6, 8, 10, 12],
|
||||
"b": [
|
||||
1,
|
||||
4,
|
||||
7,
|
||||
10,
|
||||
13,
|
||||
16,
|
||||
np.nan,
|
||||
np.nan,
|
||||
np.nan,
|
||||
np.nan,
|
||||
np.nan,
|
||||
np.nan,
|
||||
np.nan,
|
||||
],
|
||||
"c": [2, 5, 8, 11, 14, 17, 1, 3, 5, 7, 9, 11, 13],
|
||||
"h": [None] * 6 + cat_values,
|
||||
}
|
||||
)
|
||||
exp["h"] = exp["h"].astype(df2["h"].dtype)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
def test_categorical_concat_dtypes(self):
|
||||
# GH8143
|
||||
index = ["cat", "obj", "num"]
|
||||
cat = Categorical(["a", "b", "c"])
|
||||
obj = Series(["a", "b", "c"])
|
||||
num = Series([1, 2, 3])
|
||||
df = pd.concat([Series(cat), obj, num], axis=1, keys=index)
|
||||
|
||||
result = df.dtypes == "object"
|
||||
expected = Series([False, True, False], index=index)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = df.dtypes == "int64"
|
||||
expected = Series([False, False, True], index=index)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = df.dtypes == "category"
|
||||
expected = Series([True, False, False], index=index)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_categoricalindex(self):
|
||||
# GH 16111, categories that aren't lexsorted
|
||||
categories = [9, 0, 1, 2, 3]
|
||||
|
||||
a = Series(1, index=pd.CategoricalIndex([9, 0], categories=categories))
|
||||
b = Series(2, index=pd.CategoricalIndex([0, 1], categories=categories))
|
||||
c = Series(3, index=pd.CategoricalIndex([1, 2], categories=categories))
|
||||
|
||||
result = pd.concat([a, b, c], axis=1)
|
||||
|
||||
exp_idx = pd.CategoricalIndex([9, 0, 1, 2], categories=categories)
|
||||
exp = DataFrame(
|
||||
{
|
||||
0: [1, 1, np.nan, np.nan],
|
||||
1: [np.nan, 2, 2, np.nan],
|
||||
2: [np.nan, np.nan, 3, 3],
|
||||
},
|
||||
columns=[0, 1, 2],
|
||||
index=exp_idx,
|
||||
)
|
||||
tm.assert_frame_equal(result, exp)
|
||||
|
||||
def test_categorical_concat_preserve(self):
|
||||
# GH 8641 series concat not preserving category dtype
|
||||
# GH 13524 can concat different categories
|
||||
s = Series(list("abc"), dtype="category")
|
||||
s2 = Series(list("abd"), dtype="category")
|
||||
|
||||
exp = Series(list("abcabd"))
|
||||
res = pd.concat([s, s2], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
exp = Series(list("abcabc"), dtype="category")
|
||||
res = pd.concat([s, s], ignore_index=True)
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
exp = Series(list("abcabc"), index=[0, 1, 2, 0, 1, 2], dtype="category")
|
||||
res = pd.concat([s, s])
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
a = Series(np.arange(6, dtype="int64"))
|
||||
b = Series(list("aabbca"))
|
||||
|
||||
df2 = DataFrame({"A": a, "B": b.astype(CategoricalDtype(list("cab")))})
|
||||
res = pd.concat([df2, df2])
|
||||
exp = DataFrame(
|
||||
{
|
||||
"A": pd.concat([a, a]),
|
||||
"B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))),
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
def test_categorical_index_preserver(self):
|
||||
a = Series(np.arange(6, dtype="int64"))
|
||||
b = Series(list("aabbca"))
|
||||
|
||||
df2 = DataFrame(
|
||||
{"A": a, "B": b.astype(CategoricalDtype(list("cab")))}
|
||||
).set_index("B")
|
||||
result = pd.concat([df2, df2])
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A": pd.concat([a, a]),
|
||||
"B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))),
|
||||
}
|
||||
).set_index("B")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# wrong categories -> uses concat_compat, which casts to object
|
||||
df3 = DataFrame(
|
||||
{"A": a, "B": Categorical(b, categories=list("abe"))}
|
||||
).set_index("B")
|
||||
result = pd.concat([df2, df3])
|
||||
expected = pd.concat(
|
||||
[
|
||||
df2.set_axis(df2.index.astype(object), axis=0),
|
||||
df3.set_axis(df3.index.astype(object), axis=0),
|
||||
]
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_categorical_tz(self):
|
||||
# GH-23816
|
||||
a = Series(pd.date_range("2017-01-01", periods=2, tz="US/Pacific"))
|
||||
b = Series(["a", "b"], dtype="category")
|
||||
result = pd.concat([a, b], ignore_index=True)
|
||||
expected = Series(
|
||||
[
|
||||
pd.Timestamp("2017-01-01", tz="US/Pacific"),
|
||||
pd.Timestamp("2017-01-02", tz="US/Pacific"),
|
||||
"a",
|
||||
"b",
|
||||
]
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_categorical_datetime(self):
|
||||
# GH-39443
|
||||
df1 = DataFrame(
|
||||
{"x": Series(datetime(2021, 1, 1), index=[0], dtype="category")}
|
||||
)
|
||||
df2 = DataFrame(
|
||||
{"x": Series(datetime(2021, 1, 2), index=[1], dtype="category")}
|
||||
)
|
||||
|
||||
result = pd.concat([df1, df2])
|
||||
expected = DataFrame(
|
||||
{"x": Series([datetime(2021, 1, 1), datetime(2021, 1, 2)])}
|
||||
)
|
||||
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_concat_categorical_unchanged(self):
|
||||
# GH-12007
|
||||
# test fix for when concat on categorical and float
|
||||
# coerces dtype categorical -> float
|
||||
df = DataFrame(Series(["a", "b", "c"], dtype="category", name="A"))
|
||||
ser = Series([0, 1, 2], index=[0, 1, 3], name="B")
|
||||
result = pd.concat([df, ser], axis=1)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A": Series(["a", "b", "c", np.nan], dtype="category"),
|
||||
"B": Series([0, 1, np.nan, 2], dtype="float"),
|
||||
}
|
||||
)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_categorical_concat_gh7864(self):
|
||||
# GH 7864
|
||||
# make sure ordering is preserved
|
||||
df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": list("abbaae")})
|
||||
df["grade"] = Categorical(df["raw_grade"])
|
||||
df["grade"].cat.set_categories(["e", "a", "b"])
|
||||
|
||||
df1 = df[0:3]
|
||||
df2 = df[3:]
|
||||
|
||||
tm.assert_index_equal(df["grade"].cat.categories, df1["grade"].cat.categories)
|
||||
tm.assert_index_equal(df["grade"].cat.categories, df2["grade"].cat.categories)
|
||||
|
||||
dfx = pd.concat([df1, df2])
|
||||
tm.assert_index_equal(df["grade"].cat.categories, dfx["grade"].cat.categories)
|
||||
|
||||
dfa = df1._append(df2)
|
||||
tm.assert_index_equal(df["grade"].cat.categories, dfa["grade"].cat.categories)
|
||||
|
||||
def test_categorical_index_upcast(self):
|
||||
# GH 17629
|
||||
# test upcasting to object when concatinating on categorical indexes
|
||||
# with non-identical categories
|
||||
|
||||
a = DataFrame({"foo": [1, 2]}, index=Categorical(["foo", "bar"]))
|
||||
b = DataFrame({"foo": [4, 3]}, index=Categorical(["baz", "bar"]))
|
||||
|
||||
res = pd.concat([a, b])
|
||||
exp = DataFrame({"foo": [1, 2, 4, 3]}, index=["foo", "bar", "baz", "bar"])
|
||||
|
||||
tm.assert_equal(res, exp)
|
||||
|
||||
a = Series([1, 2], index=Categorical(["foo", "bar"]))
|
||||
b = Series([4, 3], index=Categorical(["baz", "bar"]))
|
||||
|
||||
res = pd.concat([a, b])
|
||||
exp = Series([1, 2, 4, 3], index=["foo", "bar", "baz", "bar"])
|
||||
|
||||
tm.assert_equal(res, exp)
|
||||
|
||||
def test_categorical_missing_from_one_frame(self):
|
||||
# GH 25412
|
||||
df1 = DataFrame({"f1": [1, 2, 3]})
|
||||
df2 = DataFrame({"f1": [2, 3, 1], "f2": Series([4, 4, 4]).astype("category")})
|
||||
result = pd.concat([df1, df2], sort=True)
|
||||
dtype = CategoricalDtype([4])
|
||||
expected = DataFrame(
|
||||
{
|
||||
"f1": [1, 2, 3, 2, 3, 1],
|
||||
"f2": Categorical.from_codes([-1, -1, -1, 0, 0, 0], dtype=dtype),
|
||||
},
|
||||
index=[0, 1, 2, 0, 1, 2],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_categorical_same_categories_different_order(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/24845
|
||||
|
||||
c1 = pd.CategoricalIndex(["a", "a"], categories=["a", "b"], ordered=False)
|
||||
c2 = pd.CategoricalIndex(["b", "b"], categories=["b", "a"], ordered=False)
|
||||
c3 = pd.CategoricalIndex(
|
||||
["a", "a", "b", "b"], categories=["a", "b"], ordered=False
|
||||
)
|
||||
|
||||
df1 = DataFrame({"A": [1, 2]}, index=c1)
|
||||
df2 = DataFrame({"A": [3, 4]}, index=c2)
|
||||
|
||||
result = pd.concat((df1, df2))
|
||||
expected = DataFrame({"A": [1, 2, 3, 4]}, index=c3)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,872 @@
|
|||
from collections import (
|
||||
abc,
|
||||
deque,
|
||||
)
|
||||
from collections.abc import Iterator
|
||||
from datetime import datetime
|
||||
from decimal import Decimal
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.errors import InvalidIndexError
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
PeriodIndex,
|
||||
Series,
|
||||
concat,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import SparseArray
|
||||
from pandas.tests.extension.decimal import to_decimal
|
||||
|
||||
|
||||
class TestConcatenate:
|
||||
def test_append_concat(self):
|
||||
# GH#1815
|
||||
d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC")
|
||||
d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC")
|
||||
|
||||
s1 = Series(np.random.default_rng(2).standard_normal(10), d1)
|
||||
s2 = Series(np.random.default_rng(2).standard_normal(10), d2)
|
||||
|
||||
s1 = s1.to_period()
|
||||
s2 = s2.to_period()
|
||||
|
||||
# drops index
|
||||
result = concat([s1, s2])
|
||||
assert isinstance(result.index, PeriodIndex)
|
||||
assert result.index[0] == s1.index[0]
|
||||
|
||||
def test_concat_copy(self, using_array_manager, using_copy_on_write):
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((4, 3)))
|
||||
df2 = DataFrame(np.random.default_rng(2).integers(0, 10, size=4).reshape(4, 1))
|
||||
df3 = DataFrame({5: "foo"}, index=range(4))
|
||||
|
||||
# These are actual copies.
|
||||
result = concat([df, df2, df3], axis=1, copy=True)
|
||||
|
||||
if not using_copy_on_write:
|
||||
for arr in result._mgr.arrays:
|
||||
assert not any(
|
||||
np.shares_memory(arr, y)
|
||||
for x in [df, df2, df3]
|
||||
for y in x._mgr.arrays
|
||||
)
|
||||
else:
|
||||
for arr in result._mgr.arrays:
|
||||
assert arr.base is not None
|
||||
|
||||
# These are the same.
|
||||
result = concat([df, df2, df3], axis=1, copy=False)
|
||||
|
||||
for arr in result._mgr.arrays:
|
||||
if arr.dtype.kind == "f":
|
||||
assert arr.base is df._mgr.arrays[0].base
|
||||
elif arr.dtype.kind in ["i", "u"]:
|
||||
assert arr.base is df2._mgr.arrays[0].base
|
||||
elif arr.dtype == object:
|
||||
if using_array_manager:
|
||||
# we get the same array object, which has no base
|
||||
assert arr is df3._mgr.arrays[0]
|
||||
else:
|
||||
assert arr.base is not None
|
||||
|
||||
# Float block was consolidated.
|
||||
df4 = DataFrame(np.random.default_rng(2).standard_normal((4, 1)))
|
||||
result = concat([df, df2, df3, df4], axis=1, copy=False)
|
||||
for arr in result._mgr.arrays:
|
||||
if arr.dtype.kind == "f":
|
||||
if using_array_manager or using_copy_on_write:
|
||||
# this is a view on some array in either df or df4
|
||||
assert any(
|
||||
np.shares_memory(arr, other)
|
||||
for other in df._mgr.arrays + df4._mgr.arrays
|
||||
)
|
||||
else:
|
||||
# the block was consolidated, so we got a copy anyway
|
||||
assert arr.base is None
|
||||
elif arr.dtype.kind in ["i", "u"]:
|
||||
assert arr.base is df2._mgr.arrays[0].base
|
||||
elif arr.dtype == object:
|
||||
# this is a view on df3
|
||||
assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays)
|
||||
|
||||
def test_concat_with_group_keys(self):
|
||||
# axis=0
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((3, 4)))
|
||||
df2 = DataFrame(np.random.default_rng(2).standard_normal((4, 4)))
|
||||
|
||||
result = concat([df, df2], keys=[0, 1])
|
||||
exp_index = MultiIndex.from_arrays(
|
||||
[[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]]
|
||||
)
|
||||
expected = DataFrame(np.r_[df.values, df2.values], index=exp_index)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat([df, df], keys=[0, 1])
|
||||
exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]])
|
||||
expected = DataFrame(np.r_[df.values, df.values], index=exp_index2)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# axis=1
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((4, 3)))
|
||||
df2 = DataFrame(np.random.default_rng(2).standard_normal((4, 4)))
|
||||
|
||||
result = concat([df, df2], keys=[0, 1], axis=1)
|
||||
expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat([df, df], keys=[0, 1], axis=1)
|
||||
expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_keys_specific_levels(self):
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
||||
pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]]
|
||||
level = ["three", "two", "one", "zero"]
|
||||
result = concat(
|
||||
pieces,
|
||||
axis=1,
|
||||
keys=["one", "two", "three"],
|
||||
levels=[level],
|
||||
names=["group_key"],
|
||||
)
|
||||
|
||||
tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key"))
|
||||
tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3]))
|
||||
|
||||
assert result.columns.names == ["group_key", None]
|
||||
|
||||
@pytest.mark.parametrize("mapping", ["mapping", "dict"])
|
||||
def test_concat_mapping(self, mapping, non_dict_mapping_subclass):
|
||||
constructor = dict if mapping == "dict" else non_dict_mapping_subclass
|
||||
frames = constructor(
|
||||
{
|
||||
"foo": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
||||
"bar": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
||||
"baz": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
||||
"qux": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
||||
}
|
||||
)
|
||||
|
||||
sorted_keys = list(frames.keys())
|
||||
|
||||
result = concat(frames)
|
||||
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat(frames, axis=1)
|
||||
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
keys = ["baz", "foo", "bar"]
|
||||
result = concat(frames, keys=keys)
|
||||
expected = concat([frames[k] for k in keys], keys=keys)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_keys_and_levels(self):
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)))
|
||||
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)))
|
||||
|
||||
levels = [["foo", "baz"], ["one", "two"]]
|
||||
names = ["first", "second"]
|
||||
result = concat(
|
||||
[df, df2, df, df2],
|
||||
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
|
||||
levels=levels,
|
||||
names=names,
|
||||
)
|
||||
expected = concat([df, df2, df, df2])
|
||||
exp_index = MultiIndex(
|
||||
levels=levels + [[0]],
|
||||
codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]],
|
||||
names=names + [None],
|
||||
)
|
||||
expected.index = exp_index
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# no names
|
||||
result = concat(
|
||||
[df, df2, df, df2],
|
||||
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
|
||||
levels=levels,
|
||||
)
|
||||
assert result.index.names == (None,) * 3
|
||||
|
||||
# no levels
|
||||
result = concat(
|
||||
[df, df2, df, df2],
|
||||
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
|
||||
names=["first", "second"],
|
||||
)
|
||||
assert result.index.names == ("first", "second", None)
|
||||
tm.assert_index_equal(
|
||||
result.index.levels[0], Index(["baz", "foo"], name="first")
|
||||
)
|
||||
|
||||
def test_concat_keys_levels_no_overlap(self):
|
||||
# GH #1406
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)), index=["a"])
|
||||
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)), index=["b"])
|
||||
|
||||
msg = "Values not found in passed level"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]])
|
||||
|
||||
msg = "Key one not in level"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]])
|
||||
|
||||
def test_crossed_dtypes_weird_corner(self):
|
||||
columns = ["A", "B", "C", "D"]
|
||||
df1 = DataFrame(
|
||||
{
|
||||
"A": np.array([1, 2, 3, 4], dtype="f8"),
|
||||
"B": np.array([1, 2, 3, 4], dtype="i8"),
|
||||
"C": np.array([1, 2, 3, 4], dtype="f8"),
|
||||
"D": np.array([1, 2, 3, 4], dtype="i8"),
|
||||
},
|
||||
columns=columns,
|
||||
)
|
||||
|
||||
df2 = DataFrame(
|
||||
{
|
||||
"A": np.array([1, 2, 3, 4], dtype="i8"),
|
||||
"B": np.array([1, 2, 3, 4], dtype="f8"),
|
||||
"C": np.array([1, 2, 3, 4], dtype="i8"),
|
||||
"D": np.array([1, 2, 3, 4], dtype="f8"),
|
||||
},
|
||||
columns=columns,
|
||||
)
|
||||
|
||||
appended = concat([df1, df2], ignore_index=True)
|
||||
expected = DataFrame(
|
||||
np.concatenate([df1.values, df2.values], axis=0), columns=columns
|
||||
)
|
||||
tm.assert_frame_equal(appended, expected)
|
||||
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)), index=["a"])
|
||||
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)), index=["b"])
|
||||
result = concat([df, df2], keys=["one", "two"], names=["first", "second"])
|
||||
assert result.index.names == ("first", "second")
|
||||
|
||||
def test_with_mixed_tuples(self, sort):
|
||||
# 10697
|
||||
# columns have mixed tuples, so handle properly
|
||||
df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2))
|
||||
df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2))
|
||||
|
||||
# it works
|
||||
concat([df1, df2], sort=sort)
|
||||
|
||||
def test_concat_mixed_objs(self):
|
||||
# concat mixed series/frames
|
||||
# G2385
|
||||
|
||||
# axis 1
|
||||
index = date_range("01-Jan-2013", periods=10, freq="H")
|
||||
arr = np.arange(10, dtype="int64")
|
||||
s1 = Series(arr, index=index)
|
||||
s2 = Series(arr, index=index)
|
||||
df = DataFrame(arr.reshape(-1, 1), index=index)
|
||||
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0]
|
||||
)
|
||||
result = concat([df, df], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1]
|
||||
)
|
||||
result = concat([s1, s2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2]
|
||||
)
|
||||
result = concat([s1, s2, s1], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3]
|
||||
)
|
||||
result = concat([s1, df, s2, s2, s1], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# with names
|
||||
s1.name = "foo"
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0]
|
||||
)
|
||||
result = concat([s1, df, s2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
s2.name = "bar"
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"]
|
||||
)
|
||||
result = concat([s1, df, s2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# ignore index
|
||||
expected = DataFrame(
|
||||
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2]
|
||||
)
|
||||
result = concat([s1, df, s2], axis=1, ignore_index=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# axis 0
|
||||
expected = DataFrame(
|
||||
np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0]
|
||||
)
|
||||
result = concat([s1, df, s2])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0])
|
||||
result = concat([s1, df, s2], ignore_index=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dtype_coercion(self):
|
||||
# 12411
|
||||
df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]})
|
||||
|
||||
result = concat([df.iloc[[0]], df.iloc[[1]]])
|
||||
tm.assert_series_equal(result.dtypes, df.dtypes)
|
||||
|
||||
# 12045
|
||||
df = DataFrame({"date": [datetime(2012, 1, 1), datetime(1012, 1, 2)]})
|
||||
result = concat([df.iloc[[0]], df.iloc[[1]]])
|
||||
tm.assert_series_equal(result.dtypes, df.dtypes)
|
||||
|
||||
# 11594
|
||||
df = DataFrame({"text": ["some words"] + [None] * 9})
|
||||
result = concat([df.iloc[[0]], df.iloc[[1]]])
|
||||
tm.assert_series_equal(result.dtypes, df.dtypes)
|
||||
|
||||
def test_concat_single_with_key(self):
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
||||
|
||||
result = concat([df], keys=["foo"])
|
||||
expected = concat([df, df], keys=["foo", "bar"])
|
||||
tm.assert_frame_equal(result, expected[:10])
|
||||
|
||||
def test_concat_no_items_raises(self):
|
||||
with pytest.raises(ValueError, match="No objects to concatenate"):
|
||||
concat([])
|
||||
|
||||
def test_concat_exclude_none(self):
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
||||
|
||||
pieces = [df[:5], None, None, df[5:]]
|
||||
result = concat(pieces)
|
||||
tm.assert_frame_equal(result, df)
|
||||
with pytest.raises(ValueError, match="All objects passed were None"):
|
||||
concat([None, None])
|
||||
|
||||
def test_concat_keys_with_none(self):
|
||||
# #1649
|
||||
df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]])
|
||||
|
||||
result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0})
|
||||
expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat(
|
||||
[None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"]
|
||||
)
|
||||
expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_bug_1719(self):
|
||||
ts1 = tm.makeTimeSeries()
|
||||
ts2 = tm.makeTimeSeries()[::2]
|
||||
|
||||
# to join with union
|
||||
# these two are of different length!
|
||||
left = concat([ts1, ts2], join="outer", axis=1)
|
||||
right = concat([ts2, ts1], join="outer", axis=1)
|
||||
|
||||
assert len(left) == len(right)
|
||||
|
||||
def test_concat_bug_2972(self):
|
||||
ts0 = Series(np.zeros(5))
|
||||
ts1 = Series(np.ones(5))
|
||||
ts0.name = ts1.name = "same name"
|
||||
result = concat([ts0, ts1], axis=1)
|
||||
|
||||
expected = DataFrame({0: ts0, 1: ts1})
|
||||
expected.columns = ["same name", "same name"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_bug_3602(self):
|
||||
# GH 3602, duplicate columns
|
||||
df1 = DataFrame(
|
||||
{
|
||||
"firmNo": [0, 0, 0, 0],
|
||||
"prc": [6, 6, 6, 6],
|
||||
"stringvar": ["rrr", "rrr", "rrr", "rrr"],
|
||||
}
|
||||
)
|
||||
df2 = DataFrame(
|
||||
{"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]}
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[0, 6, "rrr", 9, 1, 6],
|
||||
[0, 6, "rrr", 10, 2, 6],
|
||||
[0, 6, "rrr", 11, 3, 6],
|
||||
[0, 6, "rrr", 12, 4, 6],
|
||||
]
|
||||
)
|
||||
expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"]
|
||||
|
||||
result = concat([df1, df2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_iterables(self):
|
||||
# GH8645 check concat works with tuples, list, generators, and weird
|
||||
# stuff like deque and custom iterables
|
||||
df1 = DataFrame([1, 2, 3])
|
||||
df2 = DataFrame([4, 5, 6])
|
||||
expected = DataFrame([1, 2, 3, 4, 5, 6])
|
||||
tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected)
|
||||
tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected)
|
||||
tm.assert_frame_equal(
|
||||
concat((df for df in (df1, df2)), ignore_index=True), expected
|
||||
)
|
||||
tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected)
|
||||
|
||||
class CustomIterator1:
|
||||
def __len__(self) -> int:
|
||||
return 2
|
||||
|
||||
def __getitem__(self, index):
|
||||
try:
|
||||
return {0: df1, 1: df2}[index]
|
||||
except KeyError as err:
|
||||
raise IndexError from err
|
||||
|
||||
tm.assert_frame_equal(concat(CustomIterator1(), ignore_index=True), expected)
|
||||
|
||||
class CustomIterator2(abc.Iterable):
|
||||
def __iter__(self) -> Iterator:
|
||||
yield df1
|
||||
yield df2
|
||||
|
||||
tm.assert_frame_equal(concat(CustomIterator2(), ignore_index=True), expected)
|
||||
|
||||
def test_concat_order(self):
|
||||
# GH 17344, GH#47331
|
||||
dfs = [DataFrame(index=range(3), columns=["a", 1, None])]
|
||||
dfs += [DataFrame(index=range(3), columns=[None, 1, "a"]) for _ in range(100)]
|
||||
|
||||
result = concat(dfs, sort=True).columns
|
||||
expected = Index([1, "a", None])
|
||||
tm.assert_index_equal(result, expected)
|
||||
|
||||
def test_concat_different_extension_dtypes_upcasts(self):
|
||||
a = Series(pd.array([1, 2], dtype="Int64"))
|
||||
b = Series(to_decimal([1, 2]))
|
||||
|
||||
result = concat([a, b], ignore_index=True)
|
||||
expected = Series([1, 2, Decimal(1), Decimal(2)], dtype=object)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_ordered_dict(self):
|
||||
# GH 21510
|
||||
expected = concat(
|
||||
[Series(range(3)), Series(range(4))], keys=["First", "Another"]
|
||||
)
|
||||
result = concat({"First": Series(range(3)), "Another": Series(range(4))})
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_duplicate_indices_raise(self):
|
||||
# GH 45888: test raise for concat DataFrames with duplicate indices
|
||||
# https://github.com/pandas-dev/pandas/issues/36263
|
||||
df1 = DataFrame(
|
||||
np.random.default_rng(2).standard_normal(5),
|
||||
index=[0, 1, 2, 3, 3],
|
||||
columns=["a"],
|
||||
)
|
||||
df2 = DataFrame(
|
||||
np.random.default_rng(2).standard_normal(5),
|
||||
index=[0, 1, 2, 2, 4],
|
||||
columns=["b"],
|
||||
)
|
||||
msg = "Reindexing only valid with uniquely valued Index objects"
|
||||
with pytest.raises(InvalidIndexError, match=msg):
|
||||
concat([df1, df2], axis=1)
|
||||
|
||||
|
||||
def test_concat_no_unnecessary_upcast(float_numpy_dtype, frame_or_series):
|
||||
# GH 13247
|
||||
dims = frame_or_series(dtype=object).ndim
|
||||
dt = float_numpy_dtype
|
||||
|
||||
dfs = [
|
||||
frame_or_series(np.array([1], dtype=dt, ndmin=dims)),
|
||||
frame_or_series(np.array([np.nan], dtype=dt, ndmin=dims)),
|
||||
frame_or_series(np.array([5], dtype=dt, ndmin=dims)),
|
||||
]
|
||||
x = concat(dfs)
|
||||
assert x.values.dtype == dt
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pdt", [Series, DataFrame])
|
||||
def test_concat_will_upcast(pdt, any_signed_int_numpy_dtype):
|
||||
dt = any_signed_int_numpy_dtype
|
||||
dims = pdt().ndim
|
||||
dfs = [
|
||||
pdt(np.array([1], dtype=dt, ndmin=dims)),
|
||||
pdt(np.array([np.nan], ndmin=dims)),
|
||||
pdt(np.array([5], dtype=dt, ndmin=dims)),
|
||||
]
|
||||
x = concat(dfs)
|
||||
assert x.values.dtype == "float64"
|
||||
|
||||
|
||||
def test_concat_empty_and_non_empty_frame_regression():
|
||||
# GH 18178 regression test
|
||||
df1 = DataFrame({"foo": [1]})
|
||||
df2 = DataFrame({"foo": []})
|
||||
expected = DataFrame({"foo": [1.0]})
|
||||
result = concat([df1, df2])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_sparse():
|
||||
# GH 23557
|
||||
a = Series(SparseArray([0, 1, 2]))
|
||||
expected = DataFrame(data=[[0, 0], [1, 1], [2, 2]]).astype(
|
||||
pd.SparseDtype(np.int64, 0)
|
||||
)
|
||||
result = concat([a, a], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_dense_sparse():
|
||||
# GH 30668
|
||||
dtype = pd.SparseDtype(np.float64, None)
|
||||
a = Series(pd.arrays.SparseArray([1, None]), dtype=dtype)
|
||||
b = Series([1], dtype=float)
|
||||
expected = Series(data=[1, None, 1], index=[0, 1, 0]).astype(dtype)
|
||||
result = concat([a, b], axis=0)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("keys", [["e", "f", "f"], ["f", "e", "f"]])
|
||||
def test_duplicate_keys(keys):
|
||||
# GH 33654
|
||||
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
||||
s1 = Series([7, 8, 9], name="c")
|
||||
s2 = Series([10, 11, 12], name="d")
|
||||
result = concat([df, s1, s2], axis=1, keys=keys)
|
||||
expected_values = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
|
||||
expected_columns = MultiIndex.from_tuples(
|
||||
[(keys[0], "a"), (keys[0], "b"), (keys[1], "c"), (keys[2], "d")]
|
||||
)
|
||||
expected = DataFrame(expected_values, columns=expected_columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_duplicate_keys_same_frame():
|
||||
# GH 43595
|
||||
keys = ["e", "e"]
|
||||
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
||||
result = concat([df, df], axis=1, keys=keys)
|
||||
expected_values = [[1, 4, 1, 4], [2, 5, 2, 5], [3, 6, 3, 6]]
|
||||
expected_columns = MultiIndex.from_tuples(
|
||||
[(keys[0], "a"), (keys[0], "b"), (keys[1], "a"), (keys[1], "b")]
|
||||
)
|
||||
expected = DataFrame(expected_values, columns=expected_columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning"
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"obj",
|
||||
[
|
||||
tm.SubclassedDataFrame({"A": np.arange(0, 10)}),
|
||||
tm.SubclassedSeries(np.arange(0, 10), name="A"),
|
||||
],
|
||||
)
|
||||
def test_concat_preserves_subclass(obj):
|
||||
# GH28330 -- preserve subclass
|
||||
|
||||
result = concat([obj, obj])
|
||||
assert isinstance(result, type(obj))
|
||||
|
||||
|
||||
def test_concat_frame_axis0_extension_dtypes():
|
||||
# preserve extension dtype (through common_dtype mechanism)
|
||||
df1 = DataFrame({"a": pd.array([1, 2, 3], dtype="Int64")})
|
||||
df2 = DataFrame({"a": np.array([4, 5, 6])})
|
||||
|
||||
result = concat([df1, df2], ignore_index=True)
|
||||
expected = DataFrame({"a": [1, 2, 3, 4, 5, 6]}, dtype="Int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat([df2, df1], ignore_index=True)
|
||||
expected = DataFrame({"a": [4, 5, 6, 1, 2, 3]}, dtype="Int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_preserves_extension_int64_dtype():
|
||||
# GH 24768
|
||||
df_a = DataFrame({"a": [-1]}, dtype="Int64")
|
||||
df_b = DataFrame({"b": [1]}, dtype="Int64")
|
||||
result = concat([df_a, df_b], ignore_index=True)
|
||||
expected = DataFrame({"a": [-1, None], "b": [None, 1]}, dtype="Int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype1,dtype2,expected_dtype",
|
||||
[
|
||||
("bool", "bool", "bool"),
|
||||
("boolean", "bool", "boolean"),
|
||||
("bool", "boolean", "boolean"),
|
||||
("boolean", "boolean", "boolean"),
|
||||
],
|
||||
)
|
||||
def test_concat_bool_types(dtype1, dtype2, expected_dtype):
|
||||
# GH 42800
|
||||
ser1 = Series([True, False], dtype=dtype1)
|
||||
ser2 = Series([False, True], dtype=dtype2)
|
||||
result = concat([ser1, ser2], ignore_index=True)
|
||||
expected = Series([True, False, False, True], dtype=expected_dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("keys", "integrity"),
|
||||
[
|
||||
(["red"] * 3, True),
|
||||
(["red"] * 3, False),
|
||||
(["red", "blue", "red"], False),
|
||||
(["red", "blue", "red"], True),
|
||||
],
|
||||
)
|
||||
def test_concat_repeated_keys(keys, integrity):
|
||||
# GH: 20816
|
||||
series_list = [Series({"a": 1}), Series({"b": 2}), Series({"c": 3})]
|
||||
result = concat(series_list, keys=keys, verify_integrity=integrity)
|
||||
tuples = list(zip(keys, ["a", "b", "c"]))
|
||||
expected = Series([1, 2, 3], index=MultiIndex.from_tuples(tuples))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_null_object_with_dti():
|
||||
# GH#40841
|
||||
dti = pd.DatetimeIndex(
|
||||
["2021-04-08 21:21:14+00:00"], dtype="datetime64[ns, UTC]", name="Time (UTC)"
|
||||
)
|
||||
right = DataFrame(data={"C": [0.5274]}, index=dti)
|
||||
|
||||
idx = Index([None], dtype="object", name="Maybe Time (UTC)")
|
||||
left = DataFrame(data={"A": [None], "B": [np.nan]}, index=idx)
|
||||
|
||||
result = concat([left, right], axis="columns")
|
||||
|
||||
exp_index = Index([None, dti[0]], dtype=object)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A": np.array([None, np.nan], dtype=object),
|
||||
"B": [np.nan, np.nan],
|
||||
"C": [np.nan, 0.5274],
|
||||
},
|
||||
index=exp_index,
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_multiindex_with_empty_rangeindex():
|
||||
# GH#41234
|
||||
mi = MultiIndex.from_tuples([("B", 1), ("C", 1)])
|
||||
df1 = DataFrame([[1, 2]], columns=mi)
|
||||
df2 = DataFrame(index=[1], columns=pd.RangeIndex(0))
|
||||
|
||||
result = concat([df1, df2])
|
||||
expected = DataFrame([[1, 2], [np.nan, np.nan]], columns=mi)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data",
|
||||
[
|
||||
Series(data=[1, 2]),
|
||||
DataFrame(
|
||||
data={
|
||||
"col1": [1, 2],
|
||||
}
|
||||
),
|
||||
DataFrame(dtype=float),
|
||||
Series(dtype=float),
|
||||
],
|
||||
)
|
||||
def test_concat_drop_attrs(data):
|
||||
# GH#41828
|
||||
df1 = data.copy()
|
||||
df1.attrs = {1: 1}
|
||||
df2 = data.copy()
|
||||
df2.attrs = {1: 2}
|
||||
df = concat([df1, df2])
|
||||
assert len(df.attrs) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data",
|
||||
[
|
||||
Series(data=[1, 2]),
|
||||
DataFrame(
|
||||
data={
|
||||
"col1": [1, 2],
|
||||
}
|
||||
),
|
||||
DataFrame(dtype=float),
|
||||
Series(dtype=float),
|
||||
],
|
||||
)
|
||||
def test_concat_retain_attrs(data):
|
||||
# GH#41828
|
||||
df1 = data.copy()
|
||||
df1.attrs = {1: 1}
|
||||
df2 = data.copy()
|
||||
df2.attrs = {1: 1}
|
||||
df = concat([df1, df2])
|
||||
assert df.attrs[1] == 1
|
||||
|
||||
|
||||
@td.skip_array_manager_invalid_test
|
||||
@pytest.mark.parametrize("df_dtype", ["float64", "int64", "datetime64[ns]"])
|
||||
@pytest.mark.parametrize("empty_dtype", [None, "float64", "object"])
|
||||
def test_concat_ignore_empty_object_float(empty_dtype, df_dtype):
|
||||
# https://github.com/pandas-dev/pandas/issues/45637
|
||||
df = DataFrame({"foo": [1, 2], "bar": [1, 2]}, dtype=df_dtype)
|
||||
empty = DataFrame(columns=["foo", "bar"], dtype=empty_dtype)
|
||||
|
||||
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
||||
warn = None
|
||||
if df_dtype == "datetime64[ns]" or (
|
||||
df_dtype == "float64" and empty_dtype != "float64"
|
||||
):
|
||||
warn = FutureWarning
|
||||
with tm.assert_produces_warning(warn, match=msg):
|
||||
result = concat([empty, df])
|
||||
expected = df
|
||||
if df_dtype == "int64":
|
||||
# TODO what exact behaviour do we want for integer eventually?
|
||||
if empty_dtype == "float64":
|
||||
expected = df.astype("float64")
|
||||
else:
|
||||
expected = df.astype("object")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@td.skip_array_manager_invalid_test
|
||||
@pytest.mark.parametrize("df_dtype", ["float64", "int64", "datetime64[ns]"])
|
||||
@pytest.mark.parametrize("empty_dtype", [None, "float64", "object"])
|
||||
def test_concat_ignore_all_na_object_float(empty_dtype, df_dtype):
|
||||
df = DataFrame({"foo": [1, 2], "bar": [1, 2]}, dtype=df_dtype)
|
||||
empty = DataFrame({"foo": [np.nan], "bar": [np.nan]}, dtype=empty_dtype)
|
||||
|
||||
if df_dtype == "int64":
|
||||
# TODO what exact behaviour do we want for integer eventually?
|
||||
if empty_dtype == "object":
|
||||
df_dtype = "object"
|
||||
else:
|
||||
df_dtype = "float64"
|
||||
|
||||
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
||||
warn = None
|
||||
if empty_dtype != df_dtype and empty_dtype is not None:
|
||||
warn = FutureWarning
|
||||
elif df_dtype == "datetime64[ns]":
|
||||
warn = FutureWarning
|
||||
|
||||
with tm.assert_produces_warning(warn, match=msg):
|
||||
result = concat([empty, df], ignore_index=True)
|
||||
|
||||
expected = DataFrame({"foo": [np.nan, 1, 2], "bar": [np.nan, 1, 2]}, dtype=df_dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@td.skip_array_manager_invalid_test
|
||||
def test_concat_ignore_empty_from_reindex():
|
||||
# https://github.com/pandas-dev/pandas/pull/43507#issuecomment-920375856
|
||||
df1 = DataFrame({"a": [1], "b": [pd.Timestamp("2012-01-01")]})
|
||||
df2 = DataFrame({"a": [2]})
|
||||
|
||||
aligned = df2.reindex(columns=df1.columns)
|
||||
|
||||
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
result = concat([df1, aligned], ignore_index=True)
|
||||
expected = df1 = DataFrame({"a": [1, 2], "b": [pd.Timestamp("2012-01-01"), pd.NaT]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_mismatched_keys_length():
|
||||
# GH#43485
|
||||
ser = Series(range(5))
|
||||
sers = [ser + n for n in range(4)]
|
||||
keys = ["A", "B", "C"]
|
||||
|
||||
msg = r"The behavior of pd.concat with len\(keys\) != len\(objs\) is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
concat(sers, keys=keys, axis=1)
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
concat(sers, keys=keys, axis=0)
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
concat((x for x in sers), keys=(y for y in keys), axis=1)
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
concat((x for x in sers), keys=(y for y in keys), axis=0)
|
||||
|
||||
|
||||
def test_concat_multiindex_with_category():
|
||||
df1 = DataFrame(
|
||||
{
|
||||
"c1": Series(list("abc"), dtype="category"),
|
||||
"c2": Series(list("eee"), dtype="category"),
|
||||
"i2": Series([1, 2, 3]),
|
||||
}
|
||||
)
|
||||
df1 = df1.set_index(["c1", "c2"])
|
||||
df2 = DataFrame(
|
||||
{
|
||||
"c1": Series(list("abc"), dtype="category"),
|
||||
"c2": Series(list("eee"), dtype="category"),
|
||||
"i2": Series([4, 5, 6]),
|
||||
}
|
||||
)
|
||||
df2 = df2.set_index(["c1", "c2"])
|
||||
result = concat([df1, df2])
|
||||
expected = DataFrame(
|
||||
{
|
||||
"c1": Series(list("abcabc"), dtype="category"),
|
||||
"c2": Series(list("eeeeee"), dtype="category"),
|
||||
"i2": Series([1, 2, 3, 4, 5, 6]),
|
||||
}
|
||||
)
|
||||
expected = expected.set_index(["c1", "c2"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_ea_upcast():
|
||||
# GH#54848
|
||||
df1 = DataFrame(["a"], dtype="string")
|
||||
df2 = DataFrame([1], dtype="Int64")
|
||||
result = concat([df1, df2])
|
||||
expected = DataFrame(["a", 1], index=[0, 0])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,230 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
concat,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestDataFrameConcat:
|
||||
def test_concat_multiple_frames_dtypes(self):
|
||||
# GH#2759
|
||||
df1 = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
|
||||
df2 = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
|
||||
results = concat((df1, df2), axis=1).dtypes
|
||||
expected = Series(
|
||||
[np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
|
||||
index=["foo", "bar", 0, 1],
|
||||
)
|
||||
tm.assert_series_equal(results, expected)
|
||||
|
||||
def test_concat_tuple_keys(self):
|
||||
# GH#14438
|
||||
df1 = DataFrame(np.ones((2, 2)), columns=list("AB"))
|
||||
df2 = DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
|
||||
results = concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A": {
|
||||
("bee", "bah", 0): 1.0,
|
||||
("bee", "bah", 1): 1.0,
|
||||
("bee", "boo", 0): 2.0,
|
||||
("bee", "boo", 1): 2.0,
|
||||
("bee", "boo", 2): 2.0,
|
||||
},
|
||||
"B": {
|
||||
("bee", "bah", 0): 1.0,
|
||||
("bee", "bah", 1): 1.0,
|
||||
("bee", "boo", 0): 2.0,
|
||||
("bee", "boo", 1): 2.0,
|
||||
("bee", "boo", 2): 2.0,
|
||||
},
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(results, expected)
|
||||
|
||||
def test_concat_named_keys(self):
|
||||
# GH#14252
|
||||
df = DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
|
||||
index = Index(["a", "b"], name="baz")
|
||||
concatted_named_from_keys = concat([df, df], keys=index)
|
||||
expected_named = DataFrame(
|
||||
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
|
||||
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
|
||||
)
|
||||
tm.assert_frame_equal(concatted_named_from_keys, expected_named)
|
||||
|
||||
index_no_name = Index(["a", "b"], name=None)
|
||||
concatted_named_from_names = concat([df, df], keys=index_no_name, names=["baz"])
|
||||
tm.assert_frame_equal(concatted_named_from_names, expected_named)
|
||||
|
||||
concatted_unnamed = concat([df, df], keys=index_no_name)
|
||||
expected_unnamed = DataFrame(
|
||||
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
|
||||
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
|
||||
)
|
||||
tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
|
||||
|
||||
def test_concat_axis_parameter(self):
|
||||
# GH#14369
|
||||
df1 = DataFrame({"A": [0.1, 0.2]}, index=range(2))
|
||||
df2 = DataFrame({"A": [0.3, 0.4]}, index=range(2))
|
||||
|
||||
# Index/row/0 DataFrame
|
||||
expected_index = DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
|
||||
|
||||
concatted_index = concat([df1, df2], axis="index")
|
||||
tm.assert_frame_equal(concatted_index, expected_index)
|
||||
|
||||
concatted_row = concat([df1, df2], axis="rows")
|
||||
tm.assert_frame_equal(concatted_row, expected_index)
|
||||
|
||||
concatted_0 = concat([df1, df2], axis=0)
|
||||
tm.assert_frame_equal(concatted_0, expected_index)
|
||||
|
||||
# Columns/1 DataFrame
|
||||
expected_columns = DataFrame(
|
||||
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
|
||||
)
|
||||
|
||||
concatted_columns = concat([df1, df2], axis="columns")
|
||||
tm.assert_frame_equal(concatted_columns, expected_columns)
|
||||
|
||||
concatted_1 = concat([df1, df2], axis=1)
|
||||
tm.assert_frame_equal(concatted_1, expected_columns)
|
||||
|
||||
series1 = Series([0.1, 0.2])
|
||||
series2 = Series([0.3, 0.4])
|
||||
|
||||
# Index/row/0 Series
|
||||
expected_index_series = Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
|
||||
|
||||
concatted_index_series = concat([series1, series2], axis="index")
|
||||
tm.assert_series_equal(concatted_index_series, expected_index_series)
|
||||
|
||||
concatted_row_series = concat([series1, series2], axis="rows")
|
||||
tm.assert_series_equal(concatted_row_series, expected_index_series)
|
||||
|
||||
concatted_0_series = concat([series1, series2], axis=0)
|
||||
tm.assert_series_equal(concatted_0_series, expected_index_series)
|
||||
|
||||
# Columns/1 Series
|
||||
expected_columns_series = DataFrame(
|
||||
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
|
||||
)
|
||||
|
||||
concatted_columns_series = concat([series1, series2], axis="columns")
|
||||
tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
|
||||
|
||||
concatted_1_series = concat([series1, series2], axis=1)
|
||||
tm.assert_frame_equal(concatted_1_series, expected_columns_series)
|
||||
|
||||
# Testing ValueError
|
||||
with pytest.raises(ValueError, match="No axis named"):
|
||||
concat([series1, series2], axis="something")
|
||||
|
||||
def test_concat_numerical_names(self):
|
||||
# GH#15262, GH#12223
|
||||
df = DataFrame(
|
||||
{"col": range(9)},
|
||||
dtype="int32",
|
||||
index=(
|
||||
pd.MultiIndex.from_product(
|
||||
[["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
|
||||
)
|
||||
),
|
||||
)
|
||||
result = concat((df.iloc[:2, :], df.iloc[-2:, :]))
|
||||
expected = DataFrame(
|
||||
{"col": [0, 1, 7, 8]},
|
||||
dtype="int32",
|
||||
index=pd.MultiIndex.from_tuples(
|
||||
[("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
|
||||
),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_astype_dup_col(self):
|
||||
# GH#23049
|
||||
df = DataFrame([{"a": "b"}])
|
||||
df = concat([df, df], axis=1)
|
||||
|
||||
result = df.astype("category")
|
||||
expected = DataFrame(
|
||||
np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
|
||||
).astype("category")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_dataframe_keys_bug(self, sort):
|
||||
t1 = DataFrame(
|
||||
{"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))}
|
||||
)
|
||||
t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))})
|
||||
|
||||
# it works
|
||||
result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort)
|
||||
assert list(result.columns) == [("t1", "value"), ("t2", "value")]
|
||||
|
||||
def test_concat_bool_with_int(self):
|
||||
# GH#42092 we may want to change this to return object, but that
|
||||
# would need a deprecation
|
||||
df1 = DataFrame(Series([True, False, True, True], dtype="bool"))
|
||||
df2 = DataFrame(Series([1, 0, 1], dtype="int64"))
|
||||
|
||||
result = concat([df1, df2])
|
||||
expected = concat([df1.astype("int64"), df2])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_duplicates_in_index_with_keys(self):
|
||||
# GH#42651
|
||||
index = [1, 1, 3]
|
||||
data = [1, 2, 3]
|
||||
|
||||
df = DataFrame(data=data, index=index)
|
||||
result = concat([df], keys=["A"], names=["ID", "date"])
|
||||
mi = pd.MultiIndex.from_product([["A"], index], names=["ID", "date"])
|
||||
expected = DataFrame(data=data, index=mi)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
tm.assert_index_equal(result.index.levels[1], Index([1, 3], name="date"))
|
||||
|
||||
@pytest.mark.parametrize("ignore_index", [True, False])
|
||||
@pytest.mark.parametrize("order", ["C", "F"])
|
||||
@pytest.mark.parametrize("axis", [0, 1])
|
||||
def test_concat_copies(self, axis, order, ignore_index, using_copy_on_write):
|
||||
# based on asv ConcatDataFrames
|
||||
df = DataFrame(np.zeros((10000, 200), dtype=np.float32, order=order))
|
||||
|
||||
res = concat([df] * 5, axis=axis, ignore_index=ignore_index, copy=True)
|
||||
|
||||
if not using_copy_on_write:
|
||||
for arr in res._iter_column_arrays():
|
||||
for arr2 in df._iter_column_arrays():
|
||||
assert not np.shares_memory(arr, arr2)
|
||||
|
||||
def test_outer_sort_columns(self):
|
||||
# GH#47127
|
||||
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
|
||||
df2 = DataFrame({"A": [100]})
|
||||
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
||||
expected = DataFrame({0: [1.0, np.nan], "A": [0, 100], "B": [1.0, np.nan]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_inner_sort_columns(self):
|
||||
# GH#47127
|
||||
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
|
||||
df2 = DataFrame({"A": [100], 0: 2})
|
||||
result = concat([df1, df2], ignore_index=True, join="inner", sort=True)
|
||||
expected = DataFrame({0: [1, 2], "A": [0, 100]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_sort_columns_one_df(self):
|
||||
# GH#47127
|
||||
df1 = DataFrame({"A": [100], 0: 2})
|
||||
result = concat([df1], ignore_index=True, join="inner", sort=True)
|
||||
expected = DataFrame({0: [2], "A": [100]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,590 @@
|
|||
import datetime as dt
|
||||
from datetime import datetime
|
||||
|
||||
import dateutil
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
DatetimeIndex,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
Timestamp,
|
||||
concat,
|
||||
date_range,
|
||||
to_timedelta,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestDatetimeConcat:
|
||||
def test_concat_datetime64_block(self):
|
||||
rng = date_range("1/1/2000", periods=10)
|
||||
|
||||
df = DataFrame({"time": rng})
|
||||
|
||||
result = concat([df, df])
|
||||
assert (result.iloc[:10]["time"] == rng).all()
|
||||
assert (result.iloc[10:]["time"] == rng).all()
|
||||
|
||||
def test_concat_datetime_datetime64_frame(self):
|
||||
# GH#2624
|
||||
rows = []
|
||||
rows.append([datetime(2010, 1, 1), 1])
|
||||
rows.append([datetime(2010, 1, 2), "hi"])
|
||||
|
||||
df2_obj = DataFrame.from_records(rows, columns=["date", "test"])
|
||||
|
||||
ind = date_range(start="2000/1/1", freq="D", periods=10)
|
||||
df1 = DataFrame({"date": ind, "test": range(10)})
|
||||
|
||||
# it works!
|
||||
concat([df1, df2_obj])
|
||||
|
||||
def test_concat_datetime_timezone(self):
|
||||
# GH 18523
|
||||
idx1 = date_range("2011-01-01", periods=3, freq="H", tz="Europe/Paris")
|
||||
idx2 = date_range(start=idx1[0], end=idx1[-1], freq="H")
|
||||
df1 = DataFrame({"a": [1, 2, 3]}, index=idx1)
|
||||
df2 = DataFrame({"b": [1, 2, 3]}, index=idx2)
|
||||
result = concat([df1, df2], axis=1)
|
||||
|
||||
exp_idx = (
|
||||
DatetimeIndex(
|
||||
[
|
||||
"2011-01-01 00:00:00+01:00",
|
||||
"2011-01-01 01:00:00+01:00",
|
||||
"2011-01-01 02:00:00+01:00",
|
||||
],
|
||||
freq="H",
|
||||
)
|
||||
.tz_convert("UTC")
|
||||
.tz_convert("Europe/Paris")
|
||||
)
|
||||
|
||||
expected = DataFrame(
|
||||
[[1, 1], [2, 2], [3, 3]], index=exp_idx, columns=["a", "b"]
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
idx3 = date_range("2011-01-01", periods=3, freq="H", tz="Asia/Tokyo")
|
||||
df3 = DataFrame({"b": [1, 2, 3]}, index=idx3)
|
||||
result = concat([df1, df3], axis=1)
|
||||
|
||||
exp_idx = DatetimeIndex(
|
||||
[
|
||||
"2010-12-31 15:00:00+00:00",
|
||||
"2010-12-31 16:00:00+00:00",
|
||||
"2010-12-31 17:00:00+00:00",
|
||||
"2010-12-31 23:00:00+00:00",
|
||||
"2011-01-01 00:00:00+00:00",
|
||||
"2011-01-01 01:00:00+00:00",
|
||||
]
|
||||
)
|
||||
|
||||
expected = DataFrame(
|
||||
[
|
||||
[np.nan, 1],
|
||||
[np.nan, 2],
|
||||
[np.nan, 3],
|
||||
[1, np.nan],
|
||||
[2, np.nan],
|
||||
[3, np.nan],
|
||||
],
|
||||
index=exp_idx,
|
||||
columns=["a", "b"],
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# GH 13783: Concat after resample
|
||||
result = concat([df1.resample("H").mean(), df2.resample("H").mean()], sort=True)
|
||||
expected = DataFrame(
|
||||
{"a": [1, 2, 3] + [np.nan] * 3, "b": [np.nan] * 3 + [1, 2, 3]},
|
||||
index=idx1.append(idx1),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_datetimeindex_freq(self):
|
||||
# GH 3232
|
||||
# Monotonic index result
|
||||
dr = date_range("01-Jan-2013", periods=100, freq="50L", tz="UTC")
|
||||
data = list(range(100))
|
||||
expected = DataFrame(data, index=dr)
|
||||
result = concat([expected[:50], expected[50:]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# Non-monotonic index result
|
||||
result = concat([expected[50:], expected[:50]])
|
||||
expected = DataFrame(data[50:] + data[:50], index=dr[50:].append(dr[:50]))
|
||||
expected.index._data.freq = None
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_multiindex_datetime_object_index(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/11058
|
||||
idx = Index(
|
||||
[dt.date(2013, 1, 1), dt.date(2014, 1, 1), dt.date(2015, 1, 1)],
|
||||
dtype="object",
|
||||
)
|
||||
|
||||
s = Series(
|
||||
["a", "b"],
|
||||
index=MultiIndex.from_arrays(
|
||||
[
|
||||
[1, 2],
|
||||
idx[:-1],
|
||||
],
|
||||
names=["first", "second"],
|
||||
),
|
||||
)
|
||||
s2 = Series(
|
||||
["a", "b"],
|
||||
index=MultiIndex.from_arrays(
|
||||
[[1, 2], idx[::2]],
|
||||
names=["first", "second"],
|
||||
),
|
||||
)
|
||||
mi = MultiIndex.from_arrays(
|
||||
[[1, 2, 2], idx],
|
||||
names=["first", "second"],
|
||||
)
|
||||
assert mi.levels[1].dtype == object
|
||||
|
||||
expected = DataFrame(
|
||||
[["a", "a"], ["b", np.nan], [np.nan, "b"]],
|
||||
index=mi,
|
||||
)
|
||||
result = concat([s, s2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_NaT_series(self):
|
||||
# GH 11693
|
||||
# test for merging NaT series with datetime series.
|
||||
x = Series(
|
||||
date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="US/Eastern")
|
||||
)
|
||||
y = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]")
|
||||
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
|
||||
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# all NaT with tz
|
||||
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns, US/Eastern]")
|
||||
result = concat([y, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# without tz
|
||||
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h"))
|
||||
y = Series(date_range("20151124 10:00", "20151124 11:00", freq="1h"))
|
||||
y[:] = pd.NaT
|
||||
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# all NaT without tz
|
||||
x[:] = pd.NaT
|
||||
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns]")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("tz", [None, "UTC"])
|
||||
def test_concat_NaT_dataframes(self, tz):
|
||||
# GH 12396
|
||||
|
||||
first = DataFrame([[pd.NaT], [pd.NaT]])
|
||||
first = first.apply(lambda x: x.dt.tz_localize(tz))
|
||||
second = DataFrame(
|
||||
[[Timestamp("2015/01/01", tz=tz)], [Timestamp("2016/01/01", tz=tz)]],
|
||||
index=[2, 3],
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
pd.NaT,
|
||||
pd.NaT,
|
||||
Timestamp("2015/01/01", tz=tz),
|
||||
Timestamp("2016/01/01", tz=tz),
|
||||
]
|
||||
)
|
||||
|
||||
result = concat([first, second], axis=0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
||||
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
||||
@pytest.mark.parametrize("item", [pd.NaT, Timestamp("20150101")])
|
||||
def test_concat_NaT_dataframes_all_NaT_axis_0(
|
||||
self, tz1, tz2, item, using_array_manager
|
||||
):
|
||||
# GH 12396
|
||||
|
||||
# tz-naive
|
||||
first = DataFrame([[pd.NaT], [pd.NaT]]).apply(lambda x: x.dt.tz_localize(tz1))
|
||||
second = DataFrame([item]).apply(lambda x: x.dt.tz_localize(tz2))
|
||||
|
||||
result = concat([first, second], axis=0)
|
||||
expected = DataFrame(Series([pd.NaT, pd.NaT, item], index=[0, 1, 0]))
|
||||
expected = expected.apply(lambda x: x.dt.tz_localize(tz2))
|
||||
if tz1 != tz2:
|
||||
expected = expected.astype(object)
|
||||
if item is pd.NaT and not using_array_manager:
|
||||
# GH#18463
|
||||
# TODO: setting nan here is to keep the test passing as we
|
||||
# make assert_frame_equal stricter, but is nan really the
|
||||
# ideal behavior here?
|
||||
if tz1 is not None:
|
||||
expected.iloc[-1, 0] = np.nan
|
||||
else:
|
||||
expected.iloc[:-1, 0] = np.nan
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
||||
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
||||
def test_concat_NaT_dataframes_all_NaT_axis_1(self, tz1, tz2):
|
||||
# GH 12396
|
||||
|
||||
first = DataFrame(Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1))
|
||||
second = DataFrame(Series([pd.NaT]).dt.tz_localize(tz2), columns=[1])
|
||||
expected = DataFrame(
|
||||
{
|
||||
0: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1),
|
||||
1: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz2),
|
||||
}
|
||||
)
|
||||
result = concat([first, second], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
||||
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
||||
def test_concat_NaT_series_dataframe_all_NaT(self, tz1, tz2):
|
||||
# GH 12396
|
||||
|
||||
# tz-naive
|
||||
first = Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1)
|
||||
second = DataFrame(
|
||||
[
|
||||
[Timestamp("2015/01/01", tz=tz2)],
|
||||
[Timestamp("2016/01/01", tz=tz2)],
|
||||
],
|
||||
index=[2, 3],
|
||||
)
|
||||
|
||||
expected = DataFrame(
|
||||
[
|
||||
pd.NaT,
|
||||
pd.NaT,
|
||||
Timestamp("2015/01/01", tz=tz2),
|
||||
Timestamp("2016/01/01", tz=tz2),
|
||||
]
|
||||
)
|
||||
if tz1 != tz2:
|
||||
expected = expected.astype(object)
|
||||
|
||||
result = concat([first, second])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
class TestTimezoneConcat:
|
||||
def test_concat_tz_series(self):
|
||||
# gh-11755: tz and no tz
|
||||
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
|
||||
y = Series(date_range("2012-01-01", "2012-01-02"))
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# gh-11887: concat tz and object
|
||||
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
|
||||
y = Series(["a", "b"])
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# see gh-12217 and gh-12306
|
||||
# Concatenating two UTC times
|
||||
first = DataFrame([[datetime(2016, 1, 1)]])
|
||||
first[0] = first[0].dt.tz_localize("UTC")
|
||||
|
||||
second = DataFrame([[datetime(2016, 1, 2)]])
|
||||
second[0] = second[0].dt.tz_localize("UTC")
|
||||
|
||||
result = concat([first, second])
|
||||
assert result[0].dtype == "datetime64[ns, UTC]"
|
||||
|
||||
# Concatenating two London times
|
||||
first = DataFrame([[datetime(2016, 1, 1)]])
|
||||
first[0] = first[0].dt.tz_localize("Europe/London")
|
||||
|
||||
second = DataFrame([[datetime(2016, 1, 2)]])
|
||||
second[0] = second[0].dt.tz_localize("Europe/London")
|
||||
|
||||
result = concat([first, second])
|
||||
assert result[0].dtype == "datetime64[ns, Europe/London]"
|
||||
|
||||
# Concatenating 2+1 London times
|
||||
first = DataFrame([[datetime(2016, 1, 1)], [datetime(2016, 1, 2)]])
|
||||
first[0] = first[0].dt.tz_localize("Europe/London")
|
||||
|
||||
second = DataFrame([[datetime(2016, 1, 3)]])
|
||||
second[0] = second[0].dt.tz_localize("Europe/London")
|
||||
|
||||
result = concat([first, second])
|
||||
assert result[0].dtype == "datetime64[ns, Europe/London]"
|
||||
|
||||
# Concat'ing 1+2 London times
|
||||
first = DataFrame([[datetime(2016, 1, 1)]])
|
||||
first[0] = first[0].dt.tz_localize("Europe/London")
|
||||
|
||||
second = DataFrame([[datetime(2016, 1, 2)], [datetime(2016, 1, 3)]])
|
||||
second[0] = second[0].dt.tz_localize("Europe/London")
|
||||
|
||||
result = concat([first, second])
|
||||
assert result[0].dtype == "datetime64[ns, Europe/London]"
|
||||
|
||||
def test_concat_tz_series_tzlocal(self):
|
||||
# see gh-13583
|
||||
x = [
|
||||
Timestamp("2011-01-01", tz=dateutil.tz.tzlocal()),
|
||||
Timestamp("2011-02-01", tz=dateutil.tz.tzlocal()),
|
||||
]
|
||||
y = [
|
||||
Timestamp("2012-01-01", tz=dateutil.tz.tzlocal()),
|
||||
Timestamp("2012-02-01", tz=dateutil.tz.tzlocal()),
|
||||
]
|
||||
|
||||
result = concat([Series(x), Series(y)], ignore_index=True)
|
||||
tm.assert_series_equal(result, Series(x + y))
|
||||
assert result.dtype == "datetime64[ns, tzlocal()]"
|
||||
|
||||
def test_concat_tz_series_with_datetimelike(self):
|
||||
# see gh-12620: tz and timedelta
|
||||
x = [
|
||||
Timestamp("2011-01-01", tz="US/Eastern"),
|
||||
Timestamp("2011-02-01", tz="US/Eastern"),
|
||||
]
|
||||
y = [pd.Timedelta("1 day"), pd.Timedelta("2 day")]
|
||||
result = concat([Series(x), Series(y)], ignore_index=True)
|
||||
tm.assert_series_equal(result, Series(x + y, dtype="object"))
|
||||
|
||||
# tz and period
|
||||
y = [pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M")]
|
||||
result = concat([Series(x), Series(y)], ignore_index=True)
|
||||
tm.assert_series_equal(result, Series(x + y, dtype="object"))
|
||||
|
||||
def test_concat_tz_frame(self):
|
||||
df2 = DataFrame(
|
||||
{
|
||||
"A": Timestamp("20130102", tz="US/Eastern"),
|
||||
"B": Timestamp("20130603", tz="CET"),
|
||||
},
|
||||
index=range(5),
|
||||
)
|
||||
|
||||
# concat
|
||||
df3 = concat([df2.A.to_frame(), df2.B.to_frame()], axis=1)
|
||||
tm.assert_frame_equal(df2, df3)
|
||||
|
||||
def test_concat_multiple_tzs(self):
|
||||
# GH#12467
|
||||
# combining datetime tz-aware and naive DataFrames
|
||||
ts1 = Timestamp("2015-01-01", tz=None)
|
||||
ts2 = Timestamp("2015-01-01", tz="UTC")
|
||||
ts3 = Timestamp("2015-01-01", tz="EST")
|
||||
|
||||
df1 = DataFrame({"time": [ts1]})
|
||||
df2 = DataFrame({"time": [ts2]})
|
||||
df3 = DataFrame({"time": [ts3]})
|
||||
|
||||
results = concat([df1, df2]).reset_index(drop=True)
|
||||
expected = DataFrame({"time": [ts1, ts2]}, dtype=object)
|
||||
tm.assert_frame_equal(results, expected)
|
||||
|
||||
results = concat([df1, df3]).reset_index(drop=True)
|
||||
expected = DataFrame({"time": [ts1, ts3]}, dtype=object)
|
||||
tm.assert_frame_equal(results, expected)
|
||||
|
||||
results = concat([df2, df3]).reset_index(drop=True)
|
||||
expected = DataFrame({"time": [ts2, ts3]})
|
||||
tm.assert_frame_equal(results, expected)
|
||||
|
||||
def test_concat_multiindex_with_tz(self):
|
||||
# GH 6606
|
||||
df = DataFrame(
|
||||
{
|
||||
"dt": [
|
||||
datetime(2014, 1, 1),
|
||||
datetime(2014, 1, 2),
|
||||
datetime(2014, 1, 3),
|
||||
],
|
||||
"b": ["A", "B", "C"],
|
||||
"c": [1, 2, 3],
|
||||
"d": [4, 5, 6],
|
||||
}
|
||||
)
|
||||
df["dt"] = df["dt"].apply(lambda d: Timestamp(d, tz="US/Pacific"))
|
||||
df = df.set_index(["dt", "b"])
|
||||
|
||||
exp_idx1 = DatetimeIndex(
|
||||
["2014-01-01", "2014-01-02", "2014-01-03"] * 2, tz="US/Pacific", name="dt"
|
||||
)
|
||||
exp_idx2 = Index(["A", "B", "C"] * 2, name="b")
|
||||
exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
|
||||
expected = DataFrame(
|
||||
{"c": [1, 2, 3] * 2, "d": [4, 5, 6] * 2}, index=exp_idx, columns=["c", "d"]
|
||||
)
|
||||
|
||||
result = concat([df, df])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_tz_not_aligned(self):
|
||||
# GH#22796
|
||||
ts = pd.to_datetime([1, 2]).tz_localize("UTC")
|
||||
a = DataFrame({"A": ts})
|
||||
b = DataFrame({"A": ts, "B": ts})
|
||||
result = concat([a, b], sort=True, ignore_index=True)
|
||||
expected = DataFrame(
|
||||
{"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"t1",
|
||||
[
|
||||
"2015-01-01",
|
||||
pytest.param(
|
||||
pd.NaT,
|
||||
marks=pytest.mark.xfail(
|
||||
reason="GH23037 incorrect dtype when concatenating"
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_concat_tz_NaT(self, t1):
|
||||
# GH#22796
|
||||
# Concatenating tz-aware multicolumn DataFrames
|
||||
ts1 = Timestamp(t1, tz="UTC")
|
||||
ts2 = Timestamp("2015-01-01", tz="UTC")
|
||||
ts3 = Timestamp("2015-01-01", tz="UTC")
|
||||
|
||||
df1 = DataFrame([[ts1, ts2]])
|
||||
df2 = DataFrame([[ts3]])
|
||||
|
||||
result = concat([df1, df2])
|
||||
expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_tz_with_empty(self):
|
||||
# GH 9188
|
||||
result = concat(
|
||||
[DataFrame(date_range("2000", periods=1, tz="UTC")), DataFrame()]
|
||||
)
|
||||
expected = DataFrame(date_range("2000", periods=1, tz="UTC"))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
class TestPeriodConcat:
|
||||
def test_concat_period_series(self):
|
||||
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
||||
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="D"))
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="Period[D]")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_period_multiple_freq_series(self):
|
||||
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
||||
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="M"))
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
assert result.dtype == "object"
|
||||
|
||||
def test_concat_period_other_series(self):
|
||||
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
||||
y = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="M"))
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
assert result.dtype == "object"
|
||||
|
||||
# non-period
|
||||
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
||||
y = Series(DatetimeIndex(["2015-11-01", "2015-12-01"]))
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
assert result.dtype == "object"
|
||||
|
||||
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
||||
y = Series(["A", "B"])
|
||||
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
||||
result = concat([x, y], ignore_index=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
assert result.dtype == "object"
|
||||
|
||||
|
||||
def test_concat_timedelta64_block():
|
||||
rng = to_timedelta(np.arange(10), unit="s")
|
||||
|
||||
df = DataFrame({"time": rng})
|
||||
|
||||
result = concat([df, df])
|
||||
tm.assert_frame_equal(result.iloc[:10], df)
|
||||
tm.assert_frame_equal(result.iloc[10:], df)
|
||||
|
||||
|
||||
def test_concat_multiindex_datetime_nat():
|
||||
# GH#44900
|
||||
left = DataFrame({"a": 1}, index=MultiIndex.from_tuples([(1, pd.NaT)]))
|
||||
right = DataFrame(
|
||||
{"b": 2}, index=MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
|
||||
)
|
||||
result = concat([left, right], axis="columns")
|
||||
expected = DataFrame(
|
||||
{"a": [1.0, np.nan], "b": 2}, MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_concat_float_datetime64(using_array_manager):
|
||||
# GH#32934
|
||||
df_time = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")})
|
||||
df_float = DataFrame({"A": pd.array([1.0], dtype="float64")})
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A": [
|
||||
pd.array(["2000"], dtype="datetime64[ns]")[0],
|
||||
pd.array([1.0], dtype="float64")[0],
|
||||
]
|
||||
},
|
||||
index=[0, 0],
|
||||
)
|
||||
result = concat([df_time, df_float])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame({"A": pd.array([], dtype="object")})
|
||||
result = concat([df_time.iloc[:0], df_float.iloc[:0]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame({"A": pd.array([1.0], dtype="object")})
|
||||
result = concat([df_time.iloc[:0], df_float])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
if not using_array_manager:
|
||||
expected = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")})
|
||||
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
result = concat([df_time, df_float.iloc[:0]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
else:
|
||||
expected = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")}).astype(
|
||||
{"A": "object"}
|
||||
)
|
||||
result = concat([df_time, df_float.iloc[:0]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,293 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
RangeIndex,
|
||||
Series,
|
||||
concat,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestEmptyConcat:
|
||||
def test_handle_empty_objects(self, sort):
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((10, 4)), columns=list("abcd")
|
||||
)
|
||||
|
||||
dfcopy = df[:5].copy()
|
||||
dfcopy["foo"] = "bar"
|
||||
empty = df[5:5]
|
||||
|
||||
frames = [dfcopy, empty, empty, df[5:]]
|
||||
concatted = concat(frames, axis=0, sort=sort)
|
||||
|
||||
expected = df.reindex(columns=["a", "b", "c", "d", "foo"])
|
||||
expected["foo"] = expected["foo"].astype("O")
|
||||
expected.loc[0:4, "foo"] = "bar"
|
||||
|
||||
tm.assert_frame_equal(concatted, expected)
|
||||
|
||||
# empty as first element with time series
|
||||
# GH3259
|
||||
df = DataFrame(
|
||||
{"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s")
|
||||
)
|
||||
empty = DataFrame()
|
||||
result = concat([df, empty], axis=1)
|
||||
tm.assert_frame_equal(result, df)
|
||||
result = concat([empty, df], axis=1)
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
result = concat([df, empty])
|
||||
tm.assert_frame_equal(result, df)
|
||||
result = concat([empty, df])
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
def test_concat_empty_series(self):
|
||||
# GH 11082
|
||||
s1 = Series([1, 2, 3], name="x")
|
||||
s2 = Series(name="y", dtype="float64")
|
||||
res = concat([s1, s2], axis=1)
|
||||
exp = DataFrame(
|
||||
{"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]},
|
||||
index=RangeIndex(3),
|
||||
)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
s1 = Series([1, 2, 3], name="x")
|
||||
s2 = Series(name="y", dtype="float64")
|
||||
msg = "The behavior of array concatenation with empty entries is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
res = concat([s1, s2], axis=0)
|
||||
# name will be reset
|
||||
exp = Series([1, 2, 3])
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
# empty Series with no name
|
||||
s1 = Series([1, 2, 3], name="x")
|
||||
s2 = Series(name=None, dtype="float64")
|
||||
res = concat([s1, s2], axis=1)
|
||||
exp = DataFrame(
|
||||
{"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]},
|
||||
columns=["x", 0],
|
||||
index=RangeIndex(3),
|
||||
)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
@pytest.mark.parametrize("tz", [None, "UTC"])
|
||||
@pytest.mark.parametrize("values", [[], [1, 2, 3]])
|
||||
def test_concat_empty_series_timelike(self, tz, values):
|
||||
# GH 18447
|
||||
|
||||
first = Series([], dtype="M8[ns]").dt.tz_localize(tz)
|
||||
dtype = None if values else np.float64
|
||||
second = Series(values, dtype=dtype)
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz),
|
||||
1: values,
|
||||
}
|
||||
)
|
||||
result = concat([first, second], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"left,right,expected",
|
||||
[
|
||||
# booleans
|
||||
(np.bool_, np.int32, np.object_), # changed from int32 in 2.0 GH#39817
|
||||
(np.bool_, np.float32, np.object_),
|
||||
# datetime-like
|
||||
("m8[ns]", np.bool_, np.object_),
|
||||
("m8[ns]", np.int64, np.object_),
|
||||
("M8[ns]", np.bool_, np.object_),
|
||||
("M8[ns]", np.int64, np.object_),
|
||||
# categorical
|
||||
("category", "category", "category"),
|
||||
("category", "object", "object"),
|
||||
],
|
||||
)
|
||||
def test_concat_empty_series_dtypes(self, left, right, expected):
|
||||
# GH#39817, GH#45101
|
||||
result = concat([Series(dtype=left), Series(dtype=right)])
|
||||
assert result.dtype == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]
|
||||
)
|
||||
def test_concat_empty_series_dtypes_match_roundtrips(self, dtype):
|
||||
dtype = np.dtype(dtype)
|
||||
|
||||
result = concat([Series(dtype=dtype)])
|
||||
assert result.dtype == dtype
|
||||
|
||||
result = concat([Series(dtype=dtype), Series(dtype=dtype)])
|
||||
assert result.dtype == dtype
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["float64", "int8", "uint8", "m8[ns]", "M8[ns]"])
|
||||
@pytest.mark.parametrize(
|
||||
"dtype2",
|
||||
["float64", "int8", "uint8", "m8[ns]", "M8[ns]"],
|
||||
)
|
||||
def test_concat_empty_series_dtypes_roundtrips(self, dtype, dtype2):
|
||||
# round-tripping with self & like self
|
||||
if dtype == dtype2:
|
||||
pytest.skip("same dtype is not applicable for test")
|
||||
|
||||
def int_result_type(dtype, dtype2):
|
||||
typs = {dtype.kind, dtype2.kind}
|
||||
if not len(typs - {"i", "u", "b"}) and (
|
||||
dtype.kind == "i" or dtype2.kind == "i"
|
||||
):
|
||||
return "i"
|
||||
elif not len(typs - {"u", "b"}) and (
|
||||
dtype.kind == "u" or dtype2.kind == "u"
|
||||
):
|
||||
return "u"
|
||||
return None
|
||||
|
||||
def float_result_type(dtype, dtype2):
|
||||
typs = {dtype.kind, dtype2.kind}
|
||||
if not len(typs - {"f", "i", "u"}) and (
|
||||
dtype.kind == "f" or dtype2.kind == "f"
|
||||
):
|
||||
return "f"
|
||||
return None
|
||||
|
||||
def get_result_type(dtype, dtype2):
|
||||
result = float_result_type(dtype, dtype2)
|
||||
if result is not None:
|
||||
return result
|
||||
result = int_result_type(dtype, dtype2)
|
||||
if result is not None:
|
||||
return result
|
||||
return "O"
|
||||
|
||||
dtype = np.dtype(dtype)
|
||||
dtype2 = np.dtype(dtype2)
|
||||
expected = get_result_type(dtype, dtype2)
|
||||
result = concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype
|
||||
assert result.kind == expected
|
||||
|
||||
def test_concat_empty_series_dtypes_triple(self):
|
||||
assert (
|
||||
concat(
|
||||
[Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)]
|
||||
).dtype
|
||||
== np.object_
|
||||
)
|
||||
|
||||
def test_concat_empty_series_dtype_category_with_array(self):
|
||||
# GH#18515
|
||||
assert (
|
||||
concat(
|
||||
[Series(np.array([]), dtype="category"), Series(dtype="float64")]
|
||||
).dtype
|
||||
== "float64"
|
||||
)
|
||||
|
||||
def test_concat_empty_series_dtypes_sparse(self):
|
||||
result = concat(
|
||||
[
|
||||
Series(dtype="float64").astype("Sparse"),
|
||||
Series(dtype="float64").astype("Sparse"),
|
||||
]
|
||||
)
|
||||
assert result.dtype == "Sparse[float64]"
|
||||
|
||||
result = concat(
|
||||
[Series(dtype="float64").astype("Sparse"), Series(dtype="float64")]
|
||||
)
|
||||
expected = pd.SparseDtype(np.float64)
|
||||
assert result.dtype == expected
|
||||
|
||||
result = concat(
|
||||
[Series(dtype="float64").astype("Sparse"), Series(dtype="object")]
|
||||
)
|
||||
expected = pd.SparseDtype("object")
|
||||
assert result.dtype == expected
|
||||
|
||||
def test_concat_empty_df_object_dtype(self):
|
||||
# GH 9149
|
||||
df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]})
|
||||
df_2 = DataFrame(columns=df_1.columns)
|
||||
result = concat([df_1, df_2], axis=0)
|
||||
expected = df_1.astype(object)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_empty_dataframe_dtypes(self):
|
||||
df = DataFrame(columns=list("abc"))
|
||||
df["a"] = df["a"].astype(np.bool_)
|
||||
df["b"] = df["b"].astype(np.int32)
|
||||
df["c"] = df["c"].astype(np.float64)
|
||||
|
||||
result = concat([df, df])
|
||||
assert result["a"].dtype == np.bool_
|
||||
assert result["b"].dtype == np.int32
|
||||
assert result["c"].dtype == np.float64
|
||||
|
||||
result = concat([df, df.astype(np.float64)])
|
||||
assert result["a"].dtype == np.object_
|
||||
assert result["b"].dtype == np.float64
|
||||
assert result["c"].dtype == np.float64
|
||||
|
||||
def test_concat_inner_join_empty(self):
|
||||
# GH 15328
|
||||
df_empty = DataFrame()
|
||||
df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64")
|
||||
df_expected = DataFrame({"a": []}, index=RangeIndex(0), dtype="int64")
|
||||
|
||||
result = concat([df_a, df_empty], axis=1, join="inner")
|
||||
tm.assert_frame_equal(result, df_expected)
|
||||
|
||||
result = concat([df_a, df_empty], axis=1, join="outer")
|
||||
tm.assert_frame_equal(result, df_a)
|
||||
|
||||
def test_empty_dtype_coerce(self):
|
||||
# xref to #12411
|
||||
# xref to #12045
|
||||
# xref to #11594
|
||||
# see below
|
||||
|
||||
# 10571
|
||||
df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"])
|
||||
df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"])
|
||||
result = concat([df1, df2])
|
||||
expected = df1.dtypes
|
||||
tm.assert_series_equal(result.dtypes, expected)
|
||||
|
||||
def test_concat_empty_dataframe(self):
|
||||
# 39037
|
||||
df1 = DataFrame(columns=["a", "b"])
|
||||
df2 = DataFrame(columns=["b", "c"])
|
||||
result = concat([df1, df2, df1])
|
||||
expected = DataFrame(columns=["a", "b", "c"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df3 = DataFrame(columns=["a", "b"])
|
||||
df4 = DataFrame(columns=["b"])
|
||||
result = concat([df3, df4])
|
||||
expected = DataFrame(columns=["a", "b"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_empty_dataframe_different_dtypes(self):
|
||||
# 39037
|
||||
df1 = DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
|
||||
df2 = DataFrame({"a": [1, 2, 3]})
|
||||
|
||||
result = concat([df1[:0], df2[:0]])
|
||||
assert result["a"].dtype == np.int64
|
||||
assert result["b"].dtype == np.object_
|
||||
|
||||
def test_concat_to_empty_ea(self):
|
||||
"""48510 `concat` to an empty EA should maintain type EA dtype."""
|
||||
df_empty = DataFrame({"a": pd.array([], dtype=pd.Int64Dtype())})
|
||||
df_new = DataFrame({"a": pd.array([1, 2, 3], dtype=pd.Int64Dtype())})
|
||||
expected = df_new.copy()
|
||||
result = concat([df_empty, df_new])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,470 @@
|
|||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.errors import PerformanceWarning
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
concat,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestIndexConcat:
|
||||
def test_concat_ignore_index(self, sort):
|
||||
frame1 = DataFrame(
|
||||
{"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]}
|
||||
)
|
||||
frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]})
|
||||
frame1.index = Index(["x", "y", "z"])
|
||||
frame2.index = Index(["x", "y", "q"])
|
||||
|
||||
v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort)
|
||||
|
||||
nan = np.nan
|
||||
expected = DataFrame(
|
||||
[
|
||||
[nan, nan, nan, 4.3],
|
||||
["a", 1, 4.5, 5.2],
|
||||
["b", 2, 3.2, 2.2],
|
||||
["c", 3, 1.2, nan],
|
||||
],
|
||||
index=Index(["q", "x", "y", "z"]),
|
||||
)
|
||||
if not sort:
|
||||
expected = expected.loc[["x", "y", "z", "q"]]
|
||||
|
||||
tm.assert_frame_equal(v1, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"name_in1,name_in2,name_in3,name_out",
|
||||
[
|
||||
("idx", "idx", "idx", "idx"),
|
||||
("idx", "idx", None, None),
|
||||
("idx", None, None, None),
|
||||
("idx1", "idx2", None, None),
|
||||
("idx1", "idx1", "idx2", None),
|
||||
("idx1", "idx2", "idx3", None),
|
||||
(None, None, None, None),
|
||||
],
|
||||
)
|
||||
def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out):
|
||||
# GH13475
|
||||
indices = [
|
||||
Index(["a", "b", "c"], name=name_in1),
|
||||
Index(["b", "c", "d"], name=name_in2),
|
||||
Index(["c", "d", "e"], name=name_in3),
|
||||
]
|
||||
frames = [
|
||||
DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"])
|
||||
]
|
||||
result = concat(frames, axis=1)
|
||||
|
||||
exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"x": [0, 1, 2, np.nan, np.nan],
|
||||
"y": [np.nan, 0, 1, 2, np.nan],
|
||||
"z": [np.nan, np.nan, 0, 1, 2],
|
||||
},
|
||||
index=exp_ind,
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_rename_index(self):
|
||||
a = DataFrame(
|
||||
np.random.default_rng(2).random((3, 3)),
|
||||
columns=list("ABC"),
|
||||
index=Index(list("abc"), name="index_a"),
|
||||
)
|
||||
b = DataFrame(
|
||||
np.random.default_rng(2).random((3, 3)),
|
||||
columns=list("ABC"),
|
||||
index=Index(list("abc"), name="index_b"),
|
||||
)
|
||||
|
||||
result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"])
|
||||
|
||||
exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"])
|
||||
names = list(exp.index.names)
|
||||
names[1] = "lvl1"
|
||||
exp.index.set_names(names, inplace=True)
|
||||
|
||||
tm.assert_frame_equal(result, exp)
|
||||
assert result.index.names == exp.index.names
|
||||
|
||||
def test_concat_copy_index_series(self, axis, using_copy_on_write):
|
||||
# GH 29879
|
||||
ser = Series([1, 2])
|
||||
comb = concat([ser, ser], axis=axis, copy=True)
|
||||
if not using_copy_on_write or axis in [0, "index"]:
|
||||
assert comb.index is not ser.index
|
||||
else:
|
||||
assert comb.index is ser.index
|
||||
|
||||
def test_concat_copy_index_frame(self, axis, using_copy_on_write):
|
||||
# GH 29879
|
||||
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"])
|
||||
comb = concat([df, df], axis=axis, copy=True)
|
||||
if not using_copy_on_write:
|
||||
assert not comb.index.is_(df.index)
|
||||
assert not comb.columns.is_(df.columns)
|
||||
elif axis in [0, "index"]:
|
||||
assert not comb.index.is_(df.index)
|
||||
assert comb.columns.is_(df.columns)
|
||||
elif axis in [1, "columns"]:
|
||||
assert comb.index.is_(df.index)
|
||||
assert not comb.columns.is_(df.columns)
|
||||
|
||||
def test_default_index(self):
|
||||
# is_series and ignore_index
|
||||
s1 = Series([1, 2, 3], name="x")
|
||||
s2 = Series([4, 5, 6], name="y")
|
||||
res = concat([s1, s2], axis=1, ignore_index=True)
|
||||
assert isinstance(res.columns, pd.RangeIndex)
|
||||
exp = DataFrame([[1, 4], [2, 5], [3, 6]])
|
||||
# use check_index_type=True to check the result have
|
||||
# RangeIndex (default index)
|
||||
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
||||
|
||||
# is_series and all inputs have no names
|
||||
s1 = Series([1, 2, 3])
|
||||
s2 = Series([4, 5, 6])
|
||||
res = concat([s1, s2], axis=1, ignore_index=False)
|
||||
assert isinstance(res.columns, pd.RangeIndex)
|
||||
exp = DataFrame([[1, 4], [2, 5], [3, 6]])
|
||||
exp.columns = pd.RangeIndex(2)
|
||||
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
||||
|
||||
# is_dataframe and ignore_index
|
||||
df1 = DataFrame({"A": [1, 2], "B": [5, 6]})
|
||||
df2 = DataFrame({"A": [3, 4], "B": [7, 8]})
|
||||
|
||||
res = concat([df1, df2], axis=0, ignore_index=True)
|
||||
exp = DataFrame([[1, 5], [2, 6], [3, 7], [4, 8]], columns=["A", "B"])
|
||||
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
||||
|
||||
res = concat([df1, df2], axis=1, ignore_index=True)
|
||||
exp = DataFrame([[1, 5, 3, 7], [2, 6, 4, 8]])
|
||||
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
||||
|
||||
def test_dups_index(self):
|
||||
# GH 4771
|
||||
|
||||
# single dtypes
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).integers(0, 10, size=40).reshape(10, 4),
|
||||
columns=["A", "A", "C", "C"],
|
||||
)
|
||||
|
||||
result = concat([df, df], axis=1)
|
||||
tm.assert_frame_equal(result.iloc[:, :4], df)
|
||||
tm.assert_frame_equal(result.iloc[:, 4:], df)
|
||||
|
||||
result = concat([df, df], axis=0)
|
||||
tm.assert_frame_equal(result.iloc[:10], df)
|
||||
tm.assert_frame_equal(result.iloc[10:], df)
|
||||
|
||||
# multi dtypes
|
||||
df = concat(
|
||||
[
|
||||
DataFrame(
|
||||
np.random.default_rng(2).standard_normal((10, 4)),
|
||||
columns=["A", "A", "B", "B"],
|
||||
),
|
||||
DataFrame(
|
||||
np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2),
|
||||
columns=["A", "C"],
|
||||
),
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
result = concat([df, df], axis=1)
|
||||
tm.assert_frame_equal(result.iloc[:, :6], df)
|
||||
tm.assert_frame_equal(result.iloc[:, 6:], df)
|
||||
|
||||
result = concat([df, df], axis=0)
|
||||
tm.assert_frame_equal(result.iloc[:10], df)
|
||||
tm.assert_frame_equal(result.iloc[10:], df)
|
||||
|
||||
# append
|
||||
result = df.iloc[0:8, :]._append(df.iloc[8:])
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
result = df.iloc[0:8, :]._append(df.iloc[8:9])._append(df.iloc[9:10])
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
expected = concat([df, df], axis=0)
|
||||
result = df._append(df)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
class TestMultiIndexConcat:
|
||||
def test_concat_multiindex_with_keys(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
index = frame.index
|
||||
result = concat([frame, frame], keys=[0, 1], names=["iteration"])
|
||||
|
||||
assert result.index.names == ("iteration",) + index.names
|
||||
tm.assert_frame_equal(result.loc[0], frame)
|
||||
tm.assert_frame_equal(result.loc[1], frame)
|
||||
assert result.index.nlevels == 3
|
||||
|
||||
def test_concat_multiindex_with_none_in_index_names(self):
|
||||
# GH 15787
|
||||
index = MultiIndex.from_product([[1], range(5)], names=["level1", None])
|
||||
df = DataFrame({"col": range(5)}, index=index, dtype=np.int32)
|
||||
|
||||
result = concat([df, df], keys=[1, 2], names=["level2"])
|
||||
index = MultiIndex.from_product(
|
||||
[[1, 2], [1], range(5)], names=["level2", "level1", None]
|
||||
)
|
||||
expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat([df, df[:2]], keys=[1, 2], names=["level2"])
|
||||
level2 = [1] * 5 + [2] * 2
|
||||
level1 = [1] * 7
|
||||
no_name = list(range(5)) + list(range(2))
|
||||
tuples = list(zip(level2, level1, no_name))
|
||||
index = MultiIndex.from_tuples(tuples, names=["level2", "level1", None])
|
||||
expected = DataFrame({"col": no_name}, index=index, dtype=np.int32)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_multiindex_rangeindex(self):
|
||||
# GH13542
|
||||
# when multi-index levels are RangeIndex objects
|
||||
# there is a bug in concat with objects of len 1
|
||||
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((9, 2)))
|
||||
df.index = MultiIndex(
|
||||
levels=[pd.RangeIndex(3), pd.RangeIndex(3)],
|
||||
codes=[np.repeat(np.arange(3), 3), np.tile(np.arange(3), 3)],
|
||||
)
|
||||
|
||||
res = concat([df.iloc[[2, 3, 4], :], df.iloc[[5], :]])
|
||||
exp = df.iloc[[2, 3, 4, 5], :]
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
def test_concat_multiindex_dfs_with_deepcopy(self):
|
||||
# GH 9967
|
||||
example_multiindex1 = MultiIndex.from_product([["a"], ["b"]])
|
||||
example_dataframe1 = DataFrame([0], index=example_multiindex1)
|
||||
|
||||
example_multiindex2 = MultiIndex.from_product([["a"], ["c"]])
|
||||
example_dataframe2 = DataFrame([1], index=example_multiindex2)
|
||||
|
||||
example_dict = {"s1": example_dataframe1, "s2": example_dataframe2}
|
||||
expected_index = MultiIndex(
|
||||
levels=[["s1", "s2"], ["a"], ["b", "c"]],
|
||||
codes=[[0, 1], [0, 0], [0, 1]],
|
||||
names=["testname", None, None],
|
||||
)
|
||||
expected = DataFrame([[0], [1]], index=expected_index)
|
||||
result_copy = concat(deepcopy(example_dict), names=["testname"])
|
||||
tm.assert_frame_equal(result_copy, expected)
|
||||
result_no_copy = concat(example_dict, names=["testname"])
|
||||
tm.assert_frame_equal(result_no_copy, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"mi1_list",
|
||||
[
|
||||
[["a"], range(2)],
|
||||
[["b"], np.arange(2.0, 4.0)],
|
||||
[["c"], ["A", "B"]],
|
||||
[["d"], pd.date_range(start="2017", end="2018", periods=2)],
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"mi2_list",
|
||||
[
|
||||
[["a"], range(2)],
|
||||
[["b"], np.arange(2.0, 4.0)],
|
||||
[["c"], ["A", "B"]],
|
||||
[["d"], pd.date_range(start="2017", end="2018", periods=2)],
|
||||
],
|
||||
)
|
||||
def test_concat_with_various_multiindex_dtypes(
|
||||
self, mi1_list: list, mi2_list: list
|
||||
):
|
||||
# GitHub #23478
|
||||
mi1 = MultiIndex.from_product(mi1_list)
|
||||
mi2 = MultiIndex.from_product(mi2_list)
|
||||
|
||||
df1 = DataFrame(np.zeros((1, len(mi1))), columns=mi1)
|
||||
df2 = DataFrame(np.zeros((1, len(mi2))), columns=mi2)
|
||||
|
||||
if mi1_list[0] == mi2_list[0]:
|
||||
expected_mi = MultiIndex(
|
||||
levels=[mi1_list[0], list(mi1_list[1])],
|
||||
codes=[[0, 0, 0, 0], [0, 1, 0, 1]],
|
||||
)
|
||||
else:
|
||||
expected_mi = MultiIndex(
|
||||
levels=[
|
||||
mi1_list[0] + mi2_list[0],
|
||||
list(mi1_list[1]) + list(mi2_list[1]),
|
||||
],
|
||||
codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
|
||||
)
|
||||
|
||||
expected_df = DataFrame(np.zeros((1, len(expected_mi))), columns=expected_mi)
|
||||
|
||||
with tm.assert_produces_warning(None):
|
||||
result_df = concat((df1, df2), axis=1)
|
||||
|
||||
tm.assert_frame_equal(expected_df, result_df)
|
||||
|
||||
def test_concat_multiindex_(self):
|
||||
# GitHub #44786
|
||||
df = DataFrame({"col": ["a", "b", "c"]}, index=["1", "2", "2"])
|
||||
df = concat([df], keys=["X"])
|
||||
|
||||
iterables = [["X"], ["1", "2", "2"]]
|
||||
result_index = df.index
|
||||
expected_index = MultiIndex.from_product(iterables)
|
||||
|
||||
tm.assert_index_equal(result_index, expected_index)
|
||||
|
||||
result_df = df
|
||||
expected_df = DataFrame(
|
||||
{"col": ["a", "b", "c"]}, index=MultiIndex.from_product(iterables)
|
||||
)
|
||||
tm.assert_frame_equal(result_df, expected_df)
|
||||
|
||||
def test_concat_with_key_not_unique(self):
|
||||
# GitHub #46519
|
||||
df1 = DataFrame({"name": [1]})
|
||||
df2 = DataFrame({"name": [2]})
|
||||
df3 = DataFrame({"name": [3]})
|
||||
df_a = concat([df1, df2, df3], keys=["x", "y", "x"])
|
||||
# the warning is caused by indexing unsorted multi-index
|
||||
with tm.assert_produces_warning(
|
||||
PerformanceWarning, match="indexing past lexsort depth"
|
||||
):
|
||||
out_a = df_a.loc[("x", 0), :]
|
||||
|
||||
df_b = DataFrame(
|
||||
{"name": [1, 2, 3]}, index=Index([("x", 0), ("y", 0), ("x", 0)])
|
||||
)
|
||||
with tm.assert_produces_warning(
|
||||
PerformanceWarning, match="indexing past lexsort depth"
|
||||
):
|
||||
out_b = df_b.loc[("x", 0)]
|
||||
|
||||
tm.assert_frame_equal(out_a, out_b)
|
||||
|
||||
df1 = DataFrame({"name": ["a", "a", "b"]})
|
||||
df2 = DataFrame({"name": ["a", "b"]})
|
||||
df3 = DataFrame({"name": ["c", "d"]})
|
||||
df_a = concat([df1, df2, df3], keys=["x", "y", "x"])
|
||||
with tm.assert_produces_warning(
|
||||
PerformanceWarning, match="indexing past lexsort depth"
|
||||
):
|
||||
out_a = df_a.loc[("x", 0), :]
|
||||
|
||||
df_b = DataFrame(
|
||||
{
|
||||
"a": ["x", "x", "x", "y", "y", "x", "x"],
|
||||
"b": [0, 1, 2, 0, 1, 0, 1],
|
||||
"name": list("aababcd"),
|
||||
}
|
||||
).set_index(["a", "b"])
|
||||
df_b.index.names = [None, None]
|
||||
with tm.assert_produces_warning(
|
||||
PerformanceWarning, match="indexing past lexsort depth"
|
||||
):
|
||||
out_b = df_b.loc[("x", 0), :]
|
||||
|
||||
tm.assert_frame_equal(out_a, out_b)
|
||||
|
||||
def test_concat_with_duplicated_levels(self):
|
||||
# keyword levels should be unique
|
||||
df1 = DataFrame({"A": [1]}, index=["x"])
|
||||
df2 = DataFrame({"A": [1]}, index=["y"])
|
||||
msg = r"Level values not unique: \['x', 'y', 'y'\]"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
concat([df1, df2], keys=["x", "y"], levels=[["x", "y", "y"]])
|
||||
|
||||
@pytest.mark.parametrize("levels", [[["x", "y"]], [["x", "y", "y"]]])
|
||||
def test_concat_with_levels_with_none_keys(self, levels):
|
||||
df1 = DataFrame({"A": [1]}, index=["x"])
|
||||
df2 = DataFrame({"A": [1]}, index=["y"])
|
||||
msg = "levels supported only when keys is not None"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
concat([df1, df2], levels=levels)
|
||||
|
||||
def test_concat_range_index_result(self):
|
||||
# GH#47501
|
||||
df1 = DataFrame({"a": [1, 2]})
|
||||
df2 = DataFrame({"b": [1, 2]})
|
||||
|
||||
result = concat([df1, df2], sort=True, axis=1)
|
||||
expected = DataFrame({"a": [1, 2], "b": [1, 2]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
expected_index = pd.RangeIndex(0, 2)
|
||||
tm.assert_index_equal(result.index, expected_index, exact=True)
|
||||
|
||||
def test_concat_index_keep_dtype(self):
|
||||
# GH#47329
|
||||
df1 = DataFrame([[0, 1, 1]], columns=Index([1, 2, 3], dtype="object"))
|
||||
df2 = DataFrame([[0, 1]], columns=Index([1, 2], dtype="object"))
|
||||
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
||||
expected = DataFrame(
|
||||
[[0, 1, 1.0], [0, 1, np.nan]], columns=Index([1, 2, 3], dtype="object")
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_index_keep_dtype_ea_numeric(self, any_numeric_ea_dtype):
|
||||
# GH#47329
|
||||
df1 = DataFrame(
|
||||
[[0, 1, 1]], columns=Index([1, 2, 3], dtype=any_numeric_ea_dtype)
|
||||
)
|
||||
df2 = DataFrame([[0, 1]], columns=Index([1, 2], dtype=any_numeric_ea_dtype))
|
||||
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
||||
expected = DataFrame(
|
||||
[[0, 1, 1.0], [0, 1, np.nan]],
|
||||
columns=Index([1, 2, 3], dtype=any_numeric_ea_dtype),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["Int8", "Int16", "Int32"])
|
||||
def test_concat_index_find_common(self, dtype):
|
||||
# GH#47329
|
||||
df1 = DataFrame([[0, 1, 1]], columns=Index([1, 2, 3], dtype=dtype))
|
||||
df2 = DataFrame([[0, 1]], columns=Index([1, 2], dtype="Int32"))
|
||||
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
||||
expected = DataFrame(
|
||||
[[0, 1, 1.0], [0, 1, np.nan]], columns=Index([1, 2, 3], dtype="Int32")
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_axis_1_sort_false_rangeindex(self):
|
||||
# GH 46675
|
||||
s1 = Series(["a", "b", "c"])
|
||||
s2 = Series(["a", "b"])
|
||||
s3 = Series(["a", "b", "c", "d"])
|
||||
s4 = Series([], dtype=object)
|
||||
result = concat(
|
||||
[s1, s2, s3, s4], sort=False, join="outer", ignore_index=False, axis=1
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
["a"] * 3 + [np.nan],
|
||||
["b"] * 3 + [np.nan],
|
||||
["c", np.nan] * 2,
|
||||
[np.nan] * 2 + ["d"] + [np.nan],
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
tm.assert_frame_equal(
|
||||
result, expected, check_index_type=True, check_column_type=True
|
||||
)
|
||||
|
|
@ -0,0 +1,54 @@
|
|||
from io import StringIO
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
concat,
|
||||
read_csv,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestInvalidConcat:
|
||||
def test_concat_invalid(self):
|
||||
# trying to concat a ndframe with a non-ndframe
|
||||
df1 = tm.makeCustomDataframe(10, 2)
|
||||
for obj in [1, {}, [1, 2], (1, 2)]:
|
||||
msg = (
|
||||
f"cannot concatenate object of type '{type(obj)}'; "
|
||||
"only Series and DataFrame objs are valid"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
concat([df1, obj])
|
||||
|
||||
def test_concat_invalid_first_argument(self):
|
||||
df1 = tm.makeCustomDataframe(10, 2)
|
||||
msg = (
|
||||
"first argument must be an iterable of pandas "
|
||||
'objects, you passed an object of type "DataFrame"'
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
concat(df1)
|
||||
|
||||
def test_concat_generator_obj(self):
|
||||
# generator ok though
|
||||
concat(DataFrame(np.random.default_rng(2).random((5, 5))) for _ in range(3))
|
||||
|
||||
def test_concat_textreader_obj(self):
|
||||
# text reader ok
|
||||
# GH6583
|
||||
data = """index,A,B,C,D
|
||||
foo,2,3,4,5
|
||||
bar,7,8,9,10
|
||||
baz,12,13,14,15
|
||||
qux,12,13,14,15
|
||||
foo2,12,13,14,15
|
||||
bar2,12,13,14,15
|
||||
"""
|
||||
|
||||
with read_csv(StringIO(data), chunksize=1) as reader:
|
||||
result = concat(reader, ignore_index=True)
|
||||
expected = read_csv(StringIO(data))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,169 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
DatetimeIndex,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
concat,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestSeriesConcat:
|
||||
def test_concat_series(self):
|
||||
ts = tm.makeTimeSeries()
|
||||
ts.name = "foo"
|
||||
|
||||
pieces = [ts[:5], ts[5:15], ts[15:]]
|
||||
|
||||
result = concat(pieces)
|
||||
tm.assert_series_equal(result, ts)
|
||||
assert result.name == ts.name
|
||||
|
||||
result = concat(pieces, keys=[0, 1, 2])
|
||||
expected = ts.copy()
|
||||
|
||||
ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]"))
|
||||
|
||||
exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))]
|
||||
exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes)
|
||||
expected.index = exp_index
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_empty_and_non_empty_series_regression(self):
|
||||
# GH 18187 regression test
|
||||
s1 = Series([1])
|
||||
s2 = Series([], dtype=object)
|
||||
|
||||
expected = s1
|
||||
msg = "The behavior of array concatenation with empty entries is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
result = concat([s1, s2])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_series_axis1(self):
|
||||
ts = tm.makeTimeSeries()
|
||||
|
||||
pieces = [ts[:-2], ts[2:], ts[2:-2]]
|
||||
|
||||
result = concat(pieces, axis=1)
|
||||
expected = DataFrame(pieces).T
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat(pieces, keys=["A", "B", "C"], axis=1)
|
||||
expected = DataFrame(pieces, index=["A", "B", "C"]).T
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_series_axis1_preserves_series_names(self):
|
||||
# preserve series names, #2489
|
||||
s = Series(np.random.default_rng(2).standard_normal(5), name="A")
|
||||
s2 = Series(np.random.default_rng(2).standard_normal(5), name="B")
|
||||
|
||||
result = concat([s, s2], axis=1)
|
||||
expected = DataFrame({"A": s, "B": s2})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
s2.name = None
|
||||
result = concat([s, s2], axis=1)
|
||||
tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object"))
|
||||
|
||||
def test_concat_series_axis1_with_reindex(self, sort):
|
||||
# must reindex, #2603
|
||||
s = Series(
|
||||
np.random.default_rng(2).standard_normal(3), index=["c", "a", "b"], name="A"
|
||||
)
|
||||
s2 = Series(
|
||||
np.random.default_rng(2).standard_normal(4),
|
||||
index=["d", "a", "b", "c"],
|
||||
name="B",
|
||||
)
|
||||
result = concat([s, s2], axis=1, sort=sort)
|
||||
expected = DataFrame({"A": s, "B": s2}, index=["c", "a", "b", "d"])
|
||||
if sort:
|
||||
expected = expected.sort_index()
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_series_axis1_names_applied(self):
|
||||
# ensure names argument is not ignored on axis=1, #23490
|
||||
s = Series([1, 2, 3])
|
||||
s2 = Series([4, 5, 6])
|
||||
result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"])
|
||||
expected = DataFrame(
|
||||
[[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A")
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"])
|
||||
expected = DataFrame(
|
||||
[[1, 4], [2, 5], [3, 6]],
|
||||
columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_series_axis1_same_names_ignore_index(self):
|
||||
dates = date_range("01-Jan-2013", "01-Jan-2014", freq="MS")[0:-1]
|
||||
s1 = Series(
|
||||
np.random.default_rng(2).standard_normal(len(dates)),
|
||||
index=dates,
|
||||
name="value",
|
||||
)
|
||||
s2 = Series(
|
||||
np.random.default_rng(2).standard_normal(len(dates)),
|
||||
index=dates,
|
||||
name="value",
|
||||
)
|
||||
|
||||
result = concat([s1, s2], axis=1, ignore_index=True)
|
||||
expected = Index(range(2))
|
||||
|
||||
tm.assert_index_equal(result.columns, expected, exact=True)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"s1name,s2name", [(np.int64(190), (43, 0)), (190, (43, 0))]
|
||||
)
|
||||
def test_concat_series_name_npscalar_tuple(self, s1name, s2name):
|
||||
# GH21015
|
||||
s1 = Series({"a": 1, "b": 2}, name=s1name)
|
||||
s2 = Series({"c": 5, "d": 6}, name=s2name)
|
||||
result = concat([s1, s2])
|
||||
expected = Series({"a": 1, "b": 2, "c": 5, "d": 6})
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_series_partial_columns_names(self):
|
||||
# GH10698
|
||||
named_series = Series([1, 2], name="foo")
|
||||
unnamed_series1 = Series([1, 2])
|
||||
unnamed_series2 = Series([4, 5])
|
||||
|
||||
result = concat([named_series, unnamed_series1, unnamed_series2], axis=1)
|
||||
expected = DataFrame(
|
||||
{"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1]
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat(
|
||||
[named_series, unnamed_series1, unnamed_series2],
|
||||
axis=1,
|
||||
keys=["red", "blue", "yellow"],
|
||||
)
|
||||
expected = DataFrame(
|
||||
{"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]},
|
||||
columns=["red", "blue", "yellow"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = concat(
|
||||
[named_series, unnamed_series1, unnamed_series2], axis=1, ignore_index=True
|
||||
)
|
||||
expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_series_length_one_reversed(self, frame_or_series):
|
||||
# GH39401
|
||||
obj = frame_or_series([100])
|
||||
result = concat([obj.iloc[::-1]])
|
||||
tm.assert_equal(result, obj)
|
||||
|
|
@ -0,0 +1,118 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestConcatSort:
|
||||
def test_concat_sorts_columns(self, sort):
|
||||
# GH-4588
|
||||
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
|
||||
df2 = DataFrame({"a": [3, 4], "c": [5, 6]})
|
||||
|
||||
# for sort=True/None
|
||||
expected = DataFrame(
|
||||
{"a": [1, 2, 3, 4], "b": [1, 2, None, None], "c": [None, None, 5, 6]},
|
||||
columns=["a", "b", "c"],
|
||||
)
|
||||
|
||||
if sort is False:
|
||||
expected = expected[["b", "a", "c"]]
|
||||
|
||||
# default
|
||||
with tm.assert_produces_warning(None):
|
||||
result = pd.concat([df1, df2], ignore_index=True, sort=sort)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_sorts_index(self, sort):
|
||||
df1 = DataFrame({"a": [1, 2, 3]}, index=["c", "a", "b"])
|
||||
df2 = DataFrame({"b": [1, 2]}, index=["a", "b"])
|
||||
|
||||
# For True/None
|
||||
expected = DataFrame(
|
||||
{"a": [2, 3, 1], "b": [1, 2, None]},
|
||||
index=["a", "b", "c"],
|
||||
columns=["a", "b"],
|
||||
)
|
||||
if sort is False:
|
||||
expected = expected.loc[["c", "a", "b"]]
|
||||
|
||||
# Warn and sort by default
|
||||
with tm.assert_produces_warning(None):
|
||||
result = pd.concat([df1, df2], axis=1, sort=sort)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_inner_sort(self, sort):
|
||||
# https://github.com/pandas-dev/pandas/pull/20613
|
||||
df1 = DataFrame(
|
||||
{"a": [1, 2], "b": [1, 2], "c": [1, 2]}, columns=["b", "a", "c"]
|
||||
)
|
||||
df2 = DataFrame({"a": [1, 2], "b": [3, 4]}, index=[3, 4])
|
||||
|
||||
with tm.assert_produces_warning(None):
|
||||
# unset sort should *not* warn for inner join
|
||||
# since that never sorted
|
||||
result = pd.concat([df1, df2], sort=sort, join="inner", ignore_index=True)
|
||||
|
||||
expected = DataFrame({"b": [1, 2, 3, 4], "a": [1, 2, 1, 2]}, columns=["b", "a"])
|
||||
if sort is True:
|
||||
expected = expected[["a", "b"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_aligned_sort(self):
|
||||
# GH-4588
|
||||
df = DataFrame({"c": [1, 2], "b": [3, 4], "a": [5, 6]}, columns=["c", "b", "a"])
|
||||
result = pd.concat([df, df], sort=True, ignore_index=True)
|
||||
expected = DataFrame(
|
||||
{"a": [5, 6, 5, 6], "b": [3, 4, 3, 4], "c": [1, 2, 1, 2]},
|
||||
columns=["a", "b", "c"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = pd.concat(
|
||||
[df, df[["c", "b"]]], join="inner", sort=True, ignore_index=True
|
||||
)
|
||||
expected = expected[["b", "c"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_aligned_sort_does_not_raise(self):
|
||||
# GH-4588
|
||||
# We catch TypeErrors from sorting internally and do not re-raise.
|
||||
df = DataFrame({1: [1, 2], "a": [3, 4]}, columns=[1, "a"])
|
||||
expected = DataFrame({1: [1, 2, 1, 2], "a": [3, 4, 3, 4]}, columns=[1, "a"])
|
||||
result = pd.concat([df, df], ignore_index=True, sort=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_frame_with_sort_false(self):
|
||||
# GH 43375
|
||||
result = pd.concat(
|
||||
[DataFrame({i: i}, index=[i]) for i in range(2, 0, -1)], sort=False
|
||||
)
|
||||
expected = DataFrame([[2, np.nan], [np.nan, 1]], index=[2, 1], columns=[2, 1])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# GH 37937
|
||||
df1 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=[1, 2, 3])
|
||||
df2 = DataFrame({"c": [7, 8, 9], "d": [10, 11, 12]}, index=[3, 1, 6])
|
||||
result = pd.concat([df2, df1], axis=1, sort=False)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[7.0, 10.0, 3.0, 6.0],
|
||||
[8.0, 11.0, 1.0, 4.0],
|
||||
[9.0, 12.0, np.nan, np.nan],
|
||||
[np.nan, np.nan, 2.0, 5.0],
|
||||
],
|
||||
index=[3, 1, 6, 2],
|
||||
columns=["c", "d", "a", "b"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_sort_none_raises(self):
|
||||
# GH#41518
|
||||
df = DataFrame({1: [1, 2], "a": [3, 4]})
|
||||
msg = "The 'sort' keyword only accepts boolean values; None was passed."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.concat([df, df], sort=None)
|
||||
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,111 @@
|
|||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.reshape.merge import (
|
||||
MergeError,
|
||||
merge,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("input_col", "output_cols"), [("b", ["a", "b"]), ("a", ["a_x", "a_y"])]
|
||||
)
|
||||
def test_merge_cross(input_col, output_cols):
|
||||
# GH#5401
|
||||
left = DataFrame({"a": [1, 3]})
|
||||
right = DataFrame({input_col: [3, 4]})
|
||||
left_copy = left.copy()
|
||||
right_copy = right.copy()
|
||||
result = merge(left, right, how="cross")
|
||||
expected = DataFrame({output_cols[0]: [1, 1, 3, 3], output_cols[1]: [3, 4, 3, 4]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
tm.assert_frame_equal(left, left_copy)
|
||||
tm.assert_frame_equal(right, right_copy)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs",
|
||||
[
|
||||
{"left_index": True},
|
||||
{"right_index": True},
|
||||
{"on": "a"},
|
||||
{"left_on": "a"},
|
||||
{"right_on": "b"},
|
||||
],
|
||||
)
|
||||
def test_merge_cross_error_reporting(kwargs):
|
||||
# GH#5401
|
||||
left = DataFrame({"a": [1, 3]})
|
||||
right = DataFrame({"b": [3, 4]})
|
||||
msg = (
|
||||
"Can not pass on, right_on, left_on or set right_index=True or "
|
||||
"left_index=True"
|
||||
)
|
||||
with pytest.raises(MergeError, match=msg):
|
||||
merge(left, right, how="cross", **kwargs)
|
||||
|
||||
|
||||
def test_merge_cross_mixed_dtypes():
|
||||
# GH#5401
|
||||
left = DataFrame(["a", "b", "c"], columns=["A"])
|
||||
right = DataFrame(range(2), columns=["B"])
|
||||
result = merge(left, right, how="cross")
|
||||
expected = DataFrame({"A": ["a", "a", "b", "b", "c", "c"], "B": [0, 1, 0, 1, 0, 1]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_merge_cross_more_than_one_column():
|
||||
# GH#5401
|
||||
left = DataFrame({"A": list("ab"), "B": [2, 1]})
|
||||
right = DataFrame({"C": range(2), "D": range(4, 6)})
|
||||
result = merge(left, right, how="cross")
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A": ["a", "a", "b", "b"],
|
||||
"B": [2, 2, 1, 1],
|
||||
"C": [0, 1, 0, 1],
|
||||
"D": [4, 5, 4, 5],
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_merge_cross_null_values(nulls_fixture):
|
||||
# GH#5401
|
||||
left = DataFrame({"a": [1, nulls_fixture]})
|
||||
right = DataFrame({"b": ["a", "b"], "c": [1.0, 2.0]})
|
||||
result = merge(left, right, how="cross")
|
||||
expected = DataFrame(
|
||||
{
|
||||
"a": [1, 1, nulls_fixture, nulls_fixture],
|
||||
"b": ["a", "b", "a", "b"],
|
||||
"c": [1.0, 2.0, 1.0, 2.0],
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_join_cross_error_reporting():
|
||||
# GH#5401
|
||||
left = DataFrame({"a": [1, 3]})
|
||||
right = DataFrame({"a": [3, 4]})
|
||||
msg = (
|
||||
"Can not pass on, right_on, left_on or set right_index=True or "
|
||||
"left_index=True"
|
||||
)
|
||||
with pytest.raises(MergeError, match=msg):
|
||||
left.join(right, how="cross", on="a")
|
||||
|
||||
|
||||
def test_merge_cross_series():
|
||||
# GH#54055
|
||||
ls = Series([1, 2, 3, 4], index=[1, 2, 3, 4], name="left")
|
||||
rs = Series([3, 4, 5, 6], index=[3, 4, 5, 6], name="right")
|
||||
res = merge(ls, rs, how="cross")
|
||||
|
||||
expected = merge(ls.to_frame(), rs.to_frame(), how="cross")
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
|
@ -0,0 +1,186 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def df1():
|
||||
return DataFrame(
|
||||
{
|
||||
"outer": [1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4],
|
||||
"inner": [1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2],
|
||||
"v1": np.linspace(0, 1, 11),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def df2():
|
||||
return DataFrame(
|
||||
{
|
||||
"outer": [1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3],
|
||||
"inner": [1, 2, 2, 3, 3, 4, 2, 3, 1, 1, 2, 3],
|
||||
"v2": np.linspace(10, 11, 12),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(params=[[], ["outer"], ["outer", "inner"]])
|
||||
def left_df(request, df1):
|
||||
"""Construct left test DataFrame with specified levels
|
||||
(any of 'outer', 'inner', and 'v1')
|
||||
"""
|
||||
levels = request.param
|
||||
if levels:
|
||||
df1 = df1.set_index(levels)
|
||||
|
||||
return df1
|
||||
|
||||
|
||||
@pytest.fixture(params=[[], ["outer"], ["outer", "inner"]])
|
||||
def right_df(request, df2):
|
||||
"""Construct right test DataFrame with specified levels
|
||||
(any of 'outer', 'inner', and 'v2')
|
||||
"""
|
||||
levels = request.param
|
||||
|
||||
if levels:
|
||||
df2 = df2.set_index(levels)
|
||||
|
||||
return df2
|
||||
|
||||
|
||||
def compute_expected(df_left, df_right, on=None, left_on=None, right_on=None, how=None):
|
||||
"""
|
||||
Compute the expected merge result for the test case.
|
||||
|
||||
This method computes the expected result of merging two DataFrames on
|
||||
a combination of their columns and index levels. It does so by
|
||||
explicitly dropping/resetting their named index levels, performing a
|
||||
merge on their columns, and then finally restoring the appropriate
|
||||
index in the result.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_left : DataFrame
|
||||
The left DataFrame (may have zero or more named index levels)
|
||||
df_right : DataFrame
|
||||
The right DataFrame (may have zero or more named index levels)
|
||||
on : list of str
|
||||
The on parameter to the merge operation
|
||||
left_on : list of str
|
||||
The left_on parameter to the merge operation
|
||||
right_on : list of str
|
||||
The right_on parameter to the merge operation
|
||||
how : str
|
||||
The how parameter to the merge operation
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
The expected merge result
|
||||
"""
|
||||
# Handle on param if specified
|
||||
if on is not None:
|
||||
left_on, right_on = on, on
|
||||
|
||||
# Compute input named index levels
|
||||
left_levels = [n for n in df_left.index.names if n is not None]
|
||||
right_levels = [n for n in df_right.index.names if n is not None]
|
||||
|
||||
# Compute output named index levels
|
||||
output_levels = [i for i in left_on if i in right_levels and i in left_levels]
|
||||
|
||||
# Drop index levels that aren't involved in the merge
|
||||
drop_left = [n for n in left_levels if n not in left_on]
|
||||
if drop_left:
|
||||
df_left = df_left.reset_index(drop_left, drop=True)
|
||||
|
||||
drop_right = [n for n in right_levels if n not in right_on]
|
||||
if drop_right:
|
||||
df_right = df_right.reset_index(drop_right, drop=True)
|
||||
|
||||
# Convert remaining index levels to columns
|
||||
reset_left = [n for n in left_levels if n in left_on]
|
||||
if reset_left:
|
||||
df_left = df_left.reset_index(level=reset_left)
|
||||
|
||||
reset_right = [n for n in right_levels if n in right_on]
|
||||
if reset_right:
|
||||
df_right = df_right.reset_index(level=reset_right)
|
||||
|
||||
# Perform merge
|
||||
expected = df_left.merge(df_right, left_on=left_on, right_on=right_on, how=how)
|
||||
|
||||
# Restore index levels
|
||||
if output_levels:
|
||||
expected = expected.set_index(output_levels)
|
||||
|
||||
return expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"on,how",
|
||||
[
|
||||
(["outer"], "inner"),
|
||||
(["inner"], "left"),
|
||||
(["outer", "inner"], "right"),
|
||||
(["inner", "outer"], "outer"),
|
||||
],
|
||||
)
|
||||
def test_merge_indexes_and_columns_on(left_df, right_df, on, how):
|
||||
# Construct expected result
|
||||
expected = compute_expected(left_df, right_df, on=on, how=how)
|
||||
|
||||
# Perform merge
|
||||
result = left_df.merge(right_df, on=on, how=how)
|
||||
tm.assert_frame_equal(result, expected, check_like=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"left_on,right_on,how",
|
||||
[
|
||||
(["outer"], ["outer"], "inner"),
|
||||
(["inner"], ["inner"], "right"),
|
||||
(["outer", "inner"], ["outer", "inner"], "left"),
|
||||
(["inner", "outer"], ["inner", "outer"], "outer"),
|
||||
],
|
||||
)
|
||||
def test_merge_indexes_and_columns_lefton_righton(
|
||||
left_df, right_df, left_on, right_on, how
|
||||
):
|
||||
# Construct expected result
|
||||
expected = compute_expected(
|
||||
left_df, right_df, left_on=left_on, right_on=right_on, how=how
|
||||
)
|
||||
|
||||
# Perform merge
|
||||
result = left_df.merge(right_df, left_on=left_on, right_on=right_on, how=how)
|
||||
tm.assert_frame_equal(result, expected, check_like=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("left_index", ["inner", ["inner", "outer"]])
|
||||
def test_join_indexes_and_columns_on(df1, df2, left_index, join_type):
|
||||
# Construct left_df
|
||||
left_df = df1.set_index(left_index)
|
||||
|
||||
# Construct right_df
|
||||
right_df = df2.set_index(["outer", "inner"])
|
||||
|
||||
# Result
|
||||
expected = (
|
||||
left_df.reset_index()
|
||||
.join(
|
||||
right_df, on=["outer", "inner"], how=join_type, lsuffix="_x", rsuffix="_y"
|
||||
)
|
||||
.set_index(left_index)
|
||||
)
|
||||
|
||||
# Perform join
|
||||
result = left_df.join(
|
||||
right_df, on=["outer", "inner"], how=join_type, lsuffix="_x", rsuffix="_y"
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected, check_like=True)
|
||||
|
|
@ -0,0 +1,211 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
merge_ordered,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def left():
|
||||
return DataFrame({"key": ["a", "c", "e"], "lvalue": [1, 2.0, 3]})
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def right():
|
||||
return DataFrame({"key": ["b", "c", "d", "f"], "rvalue": [1, 2, 3.0, 4]})
|
||||
|
||||
|
||||
class TestMergeOrdered:
|
||||
def test_basic(self, left, right):
|
||||
result = merge_ordered(left, right, on="key")
|
||||
expected = DataFrame(
|
||||
{
|
||||
"key": ["a", "b", "c", "d", "e", "f"],
|
||||
"lvalue": [1, np.nan, 2, np.nan, 3, np.nan],
|
||||
"rvalue": [np.nan, 1, 2, 3, np.nan, 4],
|
||||
}
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_ffill(self, left, right):
|
||||
result = merge_ordered(left, right, on="key", fill_method="ffill")
|
||||
expected = DataFrame(
|
||||
{
|
||||
"key": ["a", "b", "c", "d", "e", "f"],
|
||||
"lvalue": [1.0, 1, 2, 2, 3, 3.0],
|
||||
"rvalue": [np.nan, 1, 2, 3, 3, 4],
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_multigroup(self, left, right):
|
||||
left = pd.concat([left, left], ignore_index=True)
|
||||
|
||||
left["group"] = ["a"] * 3 + ["b"] * 3
|
||||
|
||||
result = merge_ordered(
|
||||
left, right, on="key", left_by="group", fill_method="ffill"
|
||||
)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"key": ["a", "b", "c", "d", "e", "f"] * 2,
|
||||
"lvalue": [1.0, 1, 2, 2, 3, 3.0] * 2,
|
||||
"rvalue": [np.nan, 1, 2, 3, 3, 4] * 2,
|
||||
}
|
||||
)
|
||||
expected["group"] = ["a"] * 6 + ["b"] * 6
|
||||
|
||||
tm.assert_frame_equal(result, expected.loc[:, result.columns])
|
||||
|
||||
result2 = merge_ordered(
|
||||
right, left, on="key", right_by="group", fill_method="ffill"
|
||||
)
|
||||
tm.assert_frame_equal(result, result2.loc[:, result.columns])
|
||||
|
||||
result = merge_ordered(left, right, on="key", left_by="group")
|
||||
assert result["group"].notna().all()
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning"
|
||||
)
|
||||
def test_merge_type(self, left, right):
|
||||
class NotADataFrame(DataFrame):
|
||||
@property
|
||||
def _constructor(self):
|
||||
return NotADataFrame
|
||||
|
||||
nad = NotADataFrame(left)
|
||||
result = nad.merge(right, on="key")
|
||||
|
||||
assert isinstance(result, NotADataFrame)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"df_seq, pattern",
|
||||
[
|
||||
((), "[Nn]o objects"),
|
||||
([], "[Nn]o objects"),
|
||||
({}, "[Nn]o objects"),
|
||||
([None], "objects.*None"),
|
||||
([None, None], "objects.*None"),
|
||||
],
|
||||
)
|
||||
def test_empty_sequence_concat(self, df_seq, pattern):
|
||||
# GH 9157
|
||||
with pytest.raises(ValueError, match=pattern):
|
||||
pd.concat(df_seq)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"arg", [[DataFrame()], [None, DataFrame()], [DataFrame(), None]]
|
||||
)
|
||||
def test_empty_sequence_concat_ok(self, arg):
|
||||
pd.concat(arg)
|
||||
|
||||
def test_doc_example(self):
|
||||
left = DataFrame(
|
||||
{
|
||||
"group": list("aaabbb"),
|
||||
"key": ["a", "c", "e", "a", "c", "e"],
|
||||
"lvalue": [1, 2, 3] * 2,
|
||||
}
|
||||
)
|
||||
|
||||
right = DataFrame({"key": ["b", "c", "d"], "rvalue": [1, 2, 3]})
|
||||
|
||||
result = merge_ordered(left, right, fill_method="ffill", left_by="group")
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"group": list("aaaaabbbbb"),
|
||||
"key": ["a", "b", "c", "d", "e"] * 2,
|
||||
"lvalue": [1, 1, 2, 2, 3] * 2,
|
||||
"rvalue": [np.nan, 1, 2, 3, 3] * 2,
|
||||
}
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"left, right, on, left_by, right_by, expected",
|
||||
[
|
||||
(
|
||||
DataFrame({"G": ["g", "g"], "H": ["h", "h"], "T": [1, 3]}),
|
||||
DataFrame({"T": [2], "E": [1]}),
|
||||
["T"],
|
||||
["G", "H"],
|
||||
None,
|
||||
DataFrame(
|
||||
{
|
||||
"G": ["g"] * 3,
|
||||
"H": ["h"] * 3,
|
||||
"T": [1, 2, 3],
|
||||
"E": [np.nan, 1.0, np.nan],
|
||||
}
|
||||
),
|
||||
),
|
||||
(
|
||||
DataFrame({"G": ["g", "g"], "H": ["h", "h"], "T": [1, 3]}),
|
||||
DataFrame({"T": [2], "E": [1]}),
|
||||
"T",
|
||||
["G", "H"],
|
||||
None,
|
||||
DataFrame(
|
||||
{
|
||||
"G": ["g"] * 3,
|
||||
"H": ["h"] * 3,
|
||||
"T": [1, 2, 3],
|
||||
"E": [np.nan, 1.0, np.nan],
|
||||
}
|
||||
),
|
||||
),
|
||||
(
|
||||
DataFrame({"T": [2], "E": [1]}),
|
||||
DataFrame({"G": ["g", "g"], "H": ["h", "h"], "T": [1, 3]}),
|
||||
["T"],
|
||||
None,
|
||||
["G", "H"],
|
||||
DataFrame(
|
||||
{
|
||||
"T": [1, 2, 3],
|
||||
"E": [np.nan, 1.0, np.nan],
|
||||
"G": ["g"] * 3,
|
||||
"H": ["h"] * 3,
|
||||
}
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_list_type_by(self, left, right, on, left_by, right_by, expected):
|
||||
# GH 35269
|
||||
result = merge_ordered(
|
||||
left=left,
|
||||
right=right,
|
||||
on=on,
|
||||
left_by=left_by,
|
||||
right_by=right_by,
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_left_by_length_equals_to_right_shape0(self):
|
||||
# GH 38166
|
||||
left = DataFrame([["g", "h", 1], ["g", "h", 3]], columns=list("GHE"))
|
||||
right = DataFrame([[2, 1]], columns=list("ET"))
|
||||
result = merge_ordered(left, right, on="E", left_by=["G", "H"])
|
||||
expected = DataFrame(
|
||||
{"G": ["g"] * 3, "H": ["h"] * 3, "E": [1, 2, 3], "T": [np.nan, 1.0, np.nan]}
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_elements_not_in_by_but_in_df(self):
|
||||
# GH 38167
|
||||
left = DataFrame([["g", "h", 1], ["g", "h", 3]], columns=list("GHE"))
|
||||
right = DataFrame([[2, 1]], columns=list("ET"))
|
||||
msg = r"\{'h'\} not found in left columns"
|
||||
with pytest.raises(KeyError, match=msg):
|
||||
merge_ordered(left, right, on="E", left_by=["G", "h"])
|
||||
|
|
@ -0,0 +1,921 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
RangeIndex,
|
||||
Series,
|
||||
Timestamp,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.reshape.concat import concat
|
||||
from pandas.core.reshape.merge import merge
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def left():
|
||||
"""left dataframe (not multi-indexed) for multi-index join tests"""
|
||||
# a little relevant example with NAs
|
||||
key1 = ["bar", "bar", "bar", "foo", "foo", "baz", "baz", "qux", "qux", "snap"]
|
||||
key2 = ["two", "one", "three", "one", "two", "one", "two", "two", "three", "one"]
|
||||
|
||||
data = np.random.default_rng(2).standard_normal(len(key1))
|
||||
return DataFrame({"key1": key1, "key2": key2, "data": data})
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def right(multiindex_dataframe_random_data):
|
||||
"""right dataframe (multi-indexed) for multi-index join tests"""
|
||||
df = multiindex_dataframe_random_data
|
||||
df.index.names = ["key1", "key2"]
|
||||
|
||||
df.columns = ["j_one", "j_two", "j_three"]
|
||||
return df
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def left_multi():
|
||||
return DataFrame(
|
||||
{
|
||||
"Origin": ["A", "A", "B", "B", "C"],
|
||||
"Destination": ["A", "B", "A", "C", "A"],
|
||||
"Period": ["AM", "AM", "IP", "AM", "OP"],
|
||||
"TripPurp": ["hbw", "nhb", "hbo", "nhb", "hbw"],
|
||||
"Trips": [1987, 3647, 2470, 4296, 4444],
|
||||
},
|
||||
columns=["Origin", "Destination", "Period", "TripPurp", "Trips"],
|
||||
).set_index(["Origin", "Destination", "Period", "TripPurp"])
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def right_multi():
|
||||
return DataFrame(
|
||||
{
|
||||
"Origin": ["A", "A", "B", "B", "C", "C", "E"],
|
||||
"Destination": ["A", "B", "A", "B", "A", "B", "F"],
|
||||
"Period": ["AM", "AM", "IP", "AM", "OP", "IP", "AM"],
|
||||
"LinkType": ["a", "b", "c", "b", "a", "b", "a"],
|
||||
"Distance": [100, 80, 90, 80, 75, 35, 55],
|
||||
},
|
||||
columns=["Origin", "Destination", "Period", "LinkType", "Distance"],
|
||||
).set_index(["Origin", "Destination", "Period", "LinkType"])
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def on_cols_multi():
|
||||
return ["Origin", "Destination", "Period"]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def idx_cols_multi():
|
||||
return ["Origin", "Destination", "Period", "TripPurp", "LinkType"]
|
||||
|
||||
|
||||
class TestMergeMulti:
|
||||
def test_merge_on_multikey(self, left, right, join_type):
|
||||
on_cols = ["key1", "key2"]
|
||||
result = left.join(right, on=on_cols, how=join_type).reset_index(drop=True)
|
||||
|
||||
expected = merge(left, right.reset_index(), on=on_cols, how=join_type)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = left.join(right, on=on_cols, how=join_type, sort=True).reset_index(
|
||||
drop=True
|
||||
)
|
||||
|
||||
expected = merge(
|
||||
left, right.reset_index(), on=on_cols, how=join_type, sort=True
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("sort", [False, True])
|
||||
def test_left_join_multi_index(self, sort):
|
||||
icols = ["1st", "2nd", "3rd"]
|
||||
|
||||
def bind_cols(df):
|
||||
iord = lambda a: 0 if a != a else ord(a)
|
||||
f = lambda ts: ts.map(iord) - ord("a")
|
||||
return f(df["1st"]) + f(df["3rd"]) * 1e2 + df["2nd"].fillna(0) * 1e4
|
||||
|
||||
def run_asserts(left, right, sort):
|
||||
res = left.join(right, on=icols, how="left", sort=sort)
|
||||
|
||||
assert len(left) < len(res) + 1
|
||||
assert not res["4th"].isna().any()
|
||||
assert not res["5th"].isna().any()
|
||||
|
||||
tm.assert_series_equal(res["4th"], -res["5th"], check_names=False)
|
||||
result = bind_cols(res.iloc[:, :-2])
|
||||
tm.assert_series_equal(res["4th"], result, check_names=False)
|
||||
assert result.name is None
|
||||
|
||||
if sort:
|
||||
tm.assert_frame_equal(res, res.sort_values(icols, kind="mergesort"))
|
||||
|
||||
out = merge(left, right.reset_index(), on=icols, sort=sort, how="left")
|
||||
|
||||
res.index = RangeIndex(len(res))
|
||||
tm.assert_frame_equal(out, res)
|
||||
|
||||
lc = list(map(chr, np.arange(ord("a"), ord("z") + 1)))
|
||||
left = DataFrame(
|
||||
np.random.default_rng(2).choice(lc, (5000, 2)), columns=["1st", "3rd"]
|
||||
)
|
||||
# Explicit cast to float to avoid implicit cast when setting nan
|
||||
left.insert(
|
||||
1,
|
||||
"2nd",
|
||||
np.random.default_rng(2).integers(0, 1000, len(left)).astype("float"),
|
||||
)
|
||||
|
||||
i = np.random.default_rng(2).permutation(len(left))
|
||||
right = left.iloc[i].copy()
|
||||
|
||||
left["4th"] = bind_cols(left)
|
||||
right["5th"] = -bind_cols(right)
|
||||
right.set_index(icols, inplace=True)
|
||||
|
||||
run_asserts(left, right, sort)
|
||||
|
||||
# inject some nulls
|
||||
left.loc[1::23, "1st"] = np.nan
|
||||
left.loc[2::37, "2nd"] = np.nan
|
||||
left.loc[3::43, "3rd"] = np.nan
|
||||
left["4th"] = bind_cols(left)
|
||||
|
||||
i = np.random.default_rng(2).permutation(len(left))
|
||||
right = left.iloc[i, :-1]
|
||||
right["5th"] = -bind_cols(right)
|
||||
right.set_index(icols, inplace=True)
|
||||
|
||||
run_asserts(left, right, sort)
|
||||
|
||||
@pytest.mark.parametrize("sort", [False, True])
|
||||
def test_merge_right_vs_left(self, left, right, sort):
|
||||
# compare left vs right merge with multikey
|
||||
on_cols = ["key1", "key2"]
|
||||
merged_left_right = left.merge(
|
||||
right, left_on=on_cols, right_index=True, how="left", sort=sort
|
||||
)
|
||||
|
||||
merge_right_left = right.merge(
|
||||
left, right_on=on_cols, left_index=True, how="right", sort=sort
|
||||
)
|
||||
|
||||
# Reorder columns
|
||||
merge_right_left = merge_right_left[merged_left_right.columns]
|
||||
|
||||
tm.assert_frame_equal(merged_left_right, merge_right_left)
|
||||
|
||||
def test_merge_multiple_cols_with_mixed_cols_index(self):
|
||||
# GH29522
|
||||
s = Series(
|
||||
range(6),
|
||||
MultiIndex.from_product([["A", "B"], [1, 2, 3]], names=["lev1", "lev2"]),
|
||||
name="Amount",
|
||||
)
|
||||
df = DataFrame({"lev1": list("AAABBB"), "lev2": [1, 2, 3, 1, 2, 3], "col": 0})
|
||||
result = merge(df, s.reset_index(), on=["lev1", "lev2"])
|
||||
expected = DataFrame(
|
||||
{
|
||||
"lev1": list("AAABBB"),
|
||||
"lev2": [1, 2, 3, 1, 2, 3],
|
||||
"col": [0] * 6,
|
||||
"Amount": range(6),
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_compress_group_combinations(self):
|
||||
# ~ 40000000 possible unique groups
|
||||
key1 = tm.makeStringIndex(10000)
|
||||
key1 = np.tile(key1, 2)
|
||||
key2 = key1[::-1]
|
||||
|
||||
df = DataFrame(
|
||||
{
|
||||
"key1": key1,
|
||||
"key2": key2,
|
||||
"value1": np.random.default_rng(2).standard_normal(20000),
|
||||
}
|
||||
)
|
||||
|
||||
df2 = DataFrame(
|
||||
{
|
||||
"key1": key1[::2],
|
||||
"key2": key2[::2],
|
||||
"value2": np.random.default_rng(2).standard_normal(10000),
|
||||
}
|
||||
)
|
||||
|
||||
# just to hit the label compression code path
|
||||
merge(df, df2, how="outer")
|
||||
|
||||
def test_left_join_index_preserve_order(self):
|
||||
on_cols = ["k1", "k2"]
|
||||
left = DataFrame(
|
||||
{
|
||||
"k1": [0, 1, 2] * 8,
|
||||
"k2": ["foo", "bar"] * 12,
|
||||
"v": np.array(np.arange(24), dtype=np.int64),
|
||||
}
|
||||
)
|
||||
|
||||
index = MultiIndex.from_tuples([(2, "bar"), (1, "foo")])
|
||||
right = DataFrame({"v2": [5, 7]}, index=index)
|
||||
|
||||
result = left.join(right, on=on_cols)
|
||||
|
||||
expected = left.copy()
|
||||
expected["v2"] = np.nan
|
||||
expected.loc[(expected.k1 == 2) & (expected.k2 == "bar"), "v2"] = 5
|
||||
expected.loc[(expected.k1 == 1) & (expected.k2 == "foo"), "v2"] = 7
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result.sort_values(on_cols, kind="mergesort", inplace=True)
|
||||
expected = left.join(right, on=on_cols, sort=True)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# test join with multi dtypes blocks
|
||||
left = DataFrame(
|
||||
{
|
||||
"k1": [0, 1, 2] * 8,
|
||||
"k2": ["foo", "bar"] * 12,
|
||||
"k3": np.array([0, 1, 2] * 8, dtype=np.float32),
|
||||
"v": np.array(np.arange(24), dtype=np.int32),
|
||||
}
|
||||
)
|
||||
|
||||
index = MultiIndex.from_tuples([(2, "bar"), (1, "foo")])
|
||||
right = DataFrame({"v2": [5, 7]}, index=index)
|
||||
|
||||
result = left.join(right, on=on_cols)
|
||||
|
||||
expected = left.copy()
|
||||
expected["v2"] = np.nan
|
||||
expected.loc[(expected.k1 == 2) & (expected.k2 == "bar"), "v2"] = 5
|
||||
expected.loc[(expected.k1 == 1) & (expected.k2 == "foo"), "v2"] = 7
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = result.sort_values(on_cols, kind="mergesort")
|
||||
expected = left.join(right, on=on_cols, sort=True)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_left_join_index_multi_match_multiindex(self):
|
||||
left = DataFrame(
|
||||
[
|
||||
["X", "Y", "C", "a"],
|
||||
["W", "Y", "C", "e"],
|
||||
["V", "Q", "A", "h"],
|
||||
["V", "R", "D", "i"],
|
||||
["X", "Y", "D", "b"],
|
||||
["X", "Y", "A", "c"],
|
||||
["W", "Q", "B", "f"],
|
||||
["W", "R", "C", "g"],
|
||||
["V", "Y", "C", "j"],
|
||||
["X", "Y", "B", "d"],
|
||||
],
|
||||
columns=["cola", "colb", "colc", "tag"],
|
||||
index=[3, 2, 0, 1, 7, 6, 4, 5, 9, 8],
|
||||
)
|
||||
|
||||
right = DataFrame(
|
||||
[
|
||||
["W", "R", "C", 0],
|
||||
["W", "Q", "B", 3],
|
||||
["W", "Q", "B", 8],
|
||||
["X", "Y", "A", 1],
|
||||
["X", "Y", "A", 4],
|
||||
["X", "Y", "B", 5],
|
||||
["X", "Y", "C", 6],
|
||||
["X", "Y", "C", 9],
|
||||
["X", "Q", "C", -6],
|
||||
["X", "R", "C", -9],
|
||||
["V", "Y", "C", 7],
|
||||
["V", "R", "D", 2],
|
||||
["V", "R", "D", -1],
|
||||
["V", "Q", "A", -3],
|
||||
],
|
||||
columns=["col1", "col2", "col3", "val"],
|
||||
).set_index(["col1", "col2", "col3"])
|
||||
|
||||
result = left.join(right, on=["cola", "colb", "colc"], how="left")
|
||||
|
||||
expected = DataFrame(
|
||||
[
|
||||
["X", "Y", "C", "a", 6],
|
||||
["X", "Y", "C", "a", 9],
|
||||
["W", "Y", "C", "e", np.nan],
|
||||
["V", "Q", "A", "h", -3],
|
||||
["V", "R", "D", "i", 2],
|
||||
["V", "R", "D", "i", -1],
|
||||
["X", "Y", "D", "b", np.nan],
|
||||
["X", "Y", "A", "c", 1],
|
||||
["X", "Y", "A", "c", 4],
|
||||
["W", "Q", "B", "f", 3],
|
||||
["W", "Q", "B", "f", 8],
|
||||
["W", "R", "C", "g", 0],
|
||||
["V", "Y", "C", "j", 7],
|
||||
["X", "Y", "B", "d", 5],
|
||||
],
|
||||
columns=["cola", "colb", "colc", "tag", "val"],
|
||||
index=[3, 3, 2, 0, 1, 1, 7, 6, 6, 4, 4, 5, 9, 8],
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = left.join(right, on=["cola", "colb", "colc"], how="left", sort=True)
|
||||
|
||||
expected = expected.sort_values(["cola", "colb", "colc"], kind="mergesort")
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_left_join_index_multi_match(self):
|
||||
left = DataFrame(
|
||||
[["c", 0], ["b", 1], ["a", 2], ["b", 3]],
|
||||
columns=["tag", "val"],
|
||||
index=[2, 0, 1, 3],
|
||||
)
|
||||
|
||||
right = DataFrame(
|
||||
[
|
||||
["a", "v"],
|
||||
["c", "w"],
|
||||
["c", "x"],
|
||||
["d", "y"],
|
||||
["a", "z"],
|
||||
["c", "r"],
|
||||
["e", "q"],
|
||||
["c", "s"],
|
||||
],
|
||||
columns=["tag", "char"],
|
||||
).set_index("tag")
|
||||
|
||||
result = left.join(right, on="tag", how="left")
|
||||
|
||||
expected = DataFrame(
|
||||
[
|
||||
["c", 0, "w"],
|
||||
["c", 0, "x"],
|
||||
["c", 0, "r"],
|
||||
["c", 0, "s"],
|
||||
["b", 1, np.nan],
|
||||
["a", 2, "v"],
|
||||
["a", 2, "z"],
|
||||
["b", 3, np.nan],
|
||||
],
|
||||
columns=["tag", "val", "char"],
|
||||
index=[2, 2, 2, 2, 0, 1, 1, 3],
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = left.join(right, on="tag", how="left", sort=True)
|
||||
expected2 = expected.sort_values("tag", kind="mergesort")
|
||||
|
||||
tm.assert_frame_equal(result, expected2)
|
||||
|
||||
# GH7331 - maintain left frame order in left merge
|
||||
result = merge(left, right.reset_index(), how="left", on="tag")
|
||||
expected.index = RangeIndex(len(expected))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_left_merge_na_buglet(self):
|
||||
left = DataFrame(
|
||||
{
|
||||
"id": list("abcde"),
|
||||
"v1": np.random.default_rng(2).standard_normal(5),
|
||||
"v2": np.random.default_rng(2).standard_normal(5),
|
||||
"dummy": list("abcde"),
|
||||
"v3": np.random.default_rng(2).standard_normal(5),
|
||||
},
|
||||
columns=["id", "v1", "v2", "dummy", "v3"],
|
||||
)
|
||||
right = DataFrame(
|
||||
{
|
||||
"id": ["a", "b", np.nan, np.nan, np.nan],
|
||||
"sv3": [1.234, 5.678, np.nan, np.nan, np.nan],
|
||||
}
|
||||
)
|
||||
|
||||
result = merge(left, right, on="id", how="left")
|
||||
|
||||
rdf = right.drop(["id"], axis=1)
|
||||
expected = left.join(rdf)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_merge_na_keys(self):
|
||||
data = [
|
||||
[1950, "A", 1.5],
|
||||
[1950, "B", 1.5],
|
||||
[1955, "B", 1.5],
|
||||
[1960, "B", np.nan],
|
||||
[1970, "B", 4.0],
|
||||
[1950, "C", 4.0],
|
||||
[1960, "C", np.nan],
|
||||
[1965, "C", 3.0],
|
||||
[1970, "C", 4.0],
|
||||
]
|
||||
|
||||
frame = DataFrame(data, columns=["year", "panel", "data"])
|
||||
|
||||
other_data = [
|
||||
[1960, "A", np.nan],
|
||||
[1970, "A", np.nan],
|
||||
[1955, "A", np.nan],
|
||||
[1965, "A", np.nan],
|
||||
[1965, "B", np.nan],
|
||||
[1955, "C", np.nan],
|
||||
]
|
||||
other = DataFrame(other_data, columns=["year", "panel", "data"])
|
||||
|
||||
result = frame.merge(other, how="outer")
|
||||
|
||||
expected = frame.fillna(-999).merge(other.fillna(-999), how="outer")
|
||||
expected = expected.replace(-999, np.nan)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("klass", [None, np.asarray, Series, Index])
|
||||
def test_merge_datetime_index(self, klass):
|
||||
# see gh-19038
|
||||
df = DataFrame(
|
||||
[1, 2, 3], ["2016-01-01", "2017-01-01", "2018-01-01"], columns=["a"]
|
||||
)
|
||||
df.index = pd.to_datetime(df.index)
|
||||
on_vector = df.index.year
|
||||
|
||||
if klass is not None:
|
||||
on_vector = klass(on_vector)
|
||||
|
||||
exp_years = np.array([2016, 2017, 2018], dtype=np.int32)
|
||||
expected = DataFrame({"a": [1, 2, 3], "key_1": exp_years})
|
||||
|
||||
result = df.merge(df, on=["a", on_vector], how="inner")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame({"key_0": exp_years, "a_x": [1, 2, 3], "a_y": [1, 2, 3]})
|
||||
|
||||
result = df.merge(df, on=[df.index.year], how="inner")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("merge_type", ["left", "right"])
|
||||
def test_merge_datetime_multi_index_empty_df(self, merge_type):
|
||||
# see gh-36895
|
||||
|
||||
left = DataFrame(
|
||||
data={
|
||||
"data": [1.5, 1.5],
|
||||
},
|
||||
index=MultiIndex.from_tuples(
|
||||
[[Timestamp("1950-01-01"), "A"], [Timestamp("1950-01-02"), "B"]],
|
||||
names=["date", "panel"],
|
||||
),
|
||||
)
|
||||
|
||||
right = DataFrame(
|
||||
index=MultiIndex.from_tuples([], names=["date", "panel"]), columns=["state"]
|
||||
)
|
||||
|
||||
expected_index = MultiIndex.from_tuples(
|
||||
[[Timestamp("1950-01-01"), "A"], [Timestamp("1950-01-02"), "B"]],
|
||||
names=["date", "panel"],
|
||||
)
|
||||
|
||||
if merge_type == "left":
|
||||
expected = DataFrame(
|
||||
data={
|
||||
"data": [1.5, 1.5],
|
||||
"state": np.array([np.nan, np.nan], dtype=object),
|
||||
},
|
||||
index=expected_index,
|
||||
)
|
||||
results_merge = left.merge(right, how="left", on=["date", "panel"])
|
||||
results_join = left.join(right, how="left")
|
||||
else:
|
||||
expected = DataFrame(
|
||||
data={
|
||||
"state": np.array([np.nan, np.nan], dtype=object),
|
||||
"data": [1.5, 1.5],
|
||||
},
|
||||
index=expected_index,
|
||||
)
|
||||
results_merge = right.merge(left, how="right", on=["date", "panel"])
|
||||
results_join = right.join(left, how="right")
|
||||
|
||||
tm.assert_frame_equal(results_merge, expected)
|
||||
tm.assert_frame_equal(results_join, expected)
|
||||
|
||||
@pytest.fixture
|
||||
def household(self):
|
||||
household = DataFrame(
|
||||
{
|
||||
"household_id": [1, 2, 3],
|
||||
"male": [0, 1, 0],
|
||||
"wealth": [196087.3, 316478.7, 294750],
|
||||
},
|
||||
columns=["household_id", "male", "wealth"],
|
||||
).set_index("household_id")
|
||||
return household
|
||||
|
||||
@pytest.fixture
|
||||
def portfolio(self):
|
||||
portfolio = DataFrame(
|
||||
{
|
||||
"household_id": [1, 2, 2, 3, 3, 3, 4],
|
||||
"asset_id": [
|
||||
"nl0000301109",
|
||||
"nl0000289783",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"lu0197800237",
|
||||
"nl0000289965",
|
||||
np.nan,
|
||||
],
|
||||
"name": [
|
||||
"ABN Amro",
|
||||
"Robeco",
|
||||
"Royal Dutch Shell",
|
||||
"Royal Dutch Shell",
|
||||
"AAB Eastern Europe Equity Fund",
|
||||
"Postbank BioTech Fonds",
|
||||
np.nan,
|
||||
],
|
||||
"share": [1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0],
|
||||
},
|
||||
columns=["household_id", "asset_id", "name", "share"],
|
||||
).set_index(["household_id", "asset_id"])
|
||||
return portfolio
|
||||
|
||||
@pytest.fixture
|
||||
def expected(self):
|
||||
expected = (
|
||||
DataFrame(
|
||||
{
|
||||
"male": [0, 1, 1, 0, 0, 0],
|
||||
"wealth": [
|
||||
196087.3,
|
||||
316478.7,
|
||||
316478.7,
|
||||
294750.0,
|
||||
294750.0,
|
||||
294750.0,
|
||||
],
|
||||
"name": [
|
||||
"ABN Amro",
|
||||
"Robeco",
|
||||
"Royal Dutch Shell",
|
||||
"Royal Dutch Shell",
|
||||
"AAB Eastern Europe Equity Fund",
|
||||
"Postbank BioTech Fonds",
|
||||
],
|
||||
"share": [1.00, 0.40, 0.60, 0.15, 0.60, 0.25],
|
||||
"household_id": [1, 2, 2, 3, 3, 3],
|
||||
"asset_id": [
|
||||
"nl0000301109",
|
||||
"nl0000289783",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"lu0197800237",
|
||||
"nl0000289965",
|
||||
],
|
||||
}
|
||||
)
|
||||
.set_index(["household_id", "asset_id"])
|
||||
.reindex(columns=["male", "wealth", "name", "share"])
|
||||
)
|
||||
return expected
|
||||
|
||||
def test_join_multi_levels(self, portfolio, household, expected):
|
||||
portfolio = portfolio.copy()
|
||||
household = household.copy()
|
||||
|
||||
# GH 3662
|
||||
# merge multi-levels
|
||||
result = household.join(portfolio, how="inner")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_join_multi_levels_merge_equivalence(self, portfolio, household, expected):
|
||||
portfolio = portfolio.copy()
|
||||
household = household.copy()
|
||||
|
||||
# equivalency
|
||||
result = merge(
|
||||
household.reset_index(),
|
||||
portfolio.reset_index(),
|
||||
on=["household_id"],
|
||||
how="inner",
|
||||
).set_index(["household_id", "asset_id"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_join_multi_levels_outer(self, portfolio, household, expected):
|
||||
portfolio = portfolio.copy()
|
||||
household = household.copy()
|
||||
|
||||
result = household.join(portfolio, how="outer")
|
||||
expected = concat(
|
||||
[
|
||||
expected,
|
||||
(
|
||||
DataFrame(
|
||||
{"share": [1.00]},
|
||||
index=MultiIndex.from_tuples(
|
||||
[(4, np.nan)], names=["household_id", "asset_id"]
|
||||
),
|
||||
)
|
||||
),
|
||||
],
|
||||
axis=0,
|
||||
sort=True,
|
||||
).reindex(columns=expected.columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_join_multi_levels_invalid(self, portfolio, household):
|
||||
portfolio = portfolio.copy()
|
||||
household = household.copy()
|
||||
|
||||
# invalid cases
|
||||
household.index.name = "foo"
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match="cannot join with no overlapping index names"
|
||||
):
|
||||
household.join(portfolio, how="inner")
|
||||
|
||||
portfolio2 = portfolio.copy()
|
||||
portfolio2.index.set_names(["household_id", "foo"])
|
||||
|
||||
with pytest.raises(ValueError, match="columns overlap but no suffix specified"):
|
||||
portfolio2.join(portfolio, how="inner")
|
||||
|
||||
def test_join_multi_levels2(self):
|
||||
# some more advanced merges
|
||||
# GH6360
|
||||
household = DataFrame(
|
||||
{
|
||||
"household_id": [1, 2, 2, 3, 3, 3, 4],
|
||||
"asset_id": [
|
||||
"nl0000301109",
|
||||
"nl0000301109",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"lu0197800237",
|
||||
"nl0000289965",
|
||||
np.nan,
|
||||
],
|
||||
"share": [1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0],
|
||||
},
|
||||
columns=["household_id", "asset_id", "share"],
|
||||
).set_index(["household_id", "asset_id"])
|
||||
|
||||
log_return = DataFrame(
|
||||
{
|
||||
"asset_id": [
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"lu0197800237",
|
||||
"lu0197800237",
|
||||
],
|
||||
"t": [233, 234, 235, 180, 181],
|
||||
"log_return": [
|
||||
0.09604978,
|
||||
-0.06524096,
|
||||
0.03532373,
|
||||
0.03025441,
|
||||
0.036997,
|
||||
],
|
||||
}
|
||||
).set_index(["asset_id", "t"])
|
||||
|
||||
expected = (
|
||||
DataFrame(
|
||||
{
|
||||
"household_id": [2, 2, 2, 3, 3, 3, 3, 3],
|
||||
"asset_id": [
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"lu0197800237",
|
||||
"lu0197800237",
|
||||
],
|
||||
"t": [233, 234, 235, 233, 234, 235, 180, 181],
|
||||
"share": [0.6, 0.6, 0.6, 0.15, 0.15, 0.15, 0.6, 0.6],
|
||||
"log_return": [
|
||||
0.09604978,
|
||||
-0.06524096,
|
||||
0.03532373,
|
||||
0.09604978,
|
||||
-0.06524096,
|
||||
0.03532373,
|
||||
0.03025441,
|
||||
0.036997,
|
||||
],
|
||||
}
|
||||
)
|
||||
.set_index(["household_id", "asset_id", "t"])
|
||||
.reindex(columns=["share", "log_return"])
|
||||
)
|
||||
|
||||
# this is the equivalency
|
||||
result = merge(
|
||||
household.reset_index(),
|
||||
log_return.reset_index(),
|
||||
on=["asset_id"],
|
||||
how="inner",
|
||||
).set_index(["household_id", "asset_id", "t"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = (
|
||||
DataFrame(
|
||||
{
|
||||
"household_id": [1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4],
|
||||
"asset_id": [
|
||||
"nl0000301109",
|
||||
"nl0000301109",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"gb00b03mlx29",
|
||||
"lu0197800237",
|
||||
"lu0197800237",
|
||||
"nl0000289965",
|
||||
None,
|
||||
],
|
||||
"t": [
|
||||
None,
|
||||
None,
|
||||
233,
|
||||
234,
|
||||
235,
|
||||
233,
|
||||
234,
|
||||
235,
|
||||
180,
|
||||
181,
|
||||
None,
|
||||
None,
|
||||
],
|
||||
"share": [
|
||||
1.0,
|
||||
0.4,
|
||||
0.6,
|
||||
0.6,
|
||||
0.6,
|
||||
0.15,
|
||||
0.15,
|
||||
0.15,
|
||||
0.6,
|
||||
0.6,
|
||||
0.25,
|
||||
1.0,
|
||||
],
|
||||
"log_return": [
|
||||
None,
|
||||
None,
|
||||
0.09604978,
|
||||
-0.06524096,
|
||||
0.03532373,
|
||||
0.09604978,
|
||||
-0.06524096,
|
||||
0.03532373,
|
||||
0.03025441,
|
||||
0.036997,
|
||||
None,
|
||||
None,
|
||||
],
|
||||
}
|
||||
)
|
||||
.set_index(["household_id", "asset_id", "t"])
|
||||
.reindex(columns=["share", "log_return"])
|
||||
)
|
||||
|
||||
result = merge(
|
||||
household.reset_index(),
|
||||
log_return.reset_index(),
|
||||
on=["asset_id"],
|
||||
how="outer",
|
||||
).set_index(["household_id", "asset_id", "t"])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
class TestJoinMultiMulti:
|
||||
def test_join_multi_multi(
|
||||
self, left_multi, right_multi, join_type, on_cols_multi, idx_cols_multi
|
||||
):
|
||||
# Multi-index join tests
|
||||
expected = (
|
||||
merge(
|
||||
left_multi.reset_index(),
|
||||
right_multi.reset_index(),
|
||||
how=join_type,
|
||||
on=on_cols_multi,
|
||||
)
|
||||
.set_index(idx_cols_multi)
|
||||
.sort_index()
|
||||
)
|
||||
|
||||
result = left_multi.join(right_multi, how=join_type).sort_index()
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_join_multi_empty_frames(
|
||||
self, left_multi, right_multi, join_type, on_cols_multi, idx_cols_multi
|
||||
):
|
||||
left_multi = left_multi.drop(columns=left_multi.columns)
|
||||
right_multi = right_multi.drop(columns=right_multi.columns)
|
||||
|
||||
expected = (
|
||||
merge(
|
||||
left_multi.reset_index(),
|
||||
right_multi.reset_index(),
|
||||
how=join_type,
|
||||
on=on_cols_multi,
|
||||
)
|
||||
.set_index(idx_cols_multi)
|
||||
.sort_index()
|
||||
)
|
||||
|
||||
result = left_multi.join(right_multi, how=join_type).sort_index()
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("box", [None, np.asarray, Series, Index])
|
||||
def test_merge_datetime_index(self, box):
|
||||
# see gh-19038
|
||||
df = DataFrame(
|
||||
[1, 2, 3], ["2016-01-01", "2017-01-01", "2018-01-01"], columns=["a"]
|
||||
)
|
||||
df.index = pd.to_datetime(df.index)
|
||||
on_vector = df.index.year
|
||||
|
||||
if box is not None:
|
||||
on_vector = box(on_vector)
|
||||
|
||||
exp_years = np.array([2016, 2017, 2018], dtype=np.int32)
|
||||
expected = DataFrame({"a": [1, 2, 3], "key_1": exp_years})
|
||||
|
||||
result = df.merge(df, on=["a", on_vector], how="inner")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame({"key_0": exp_years, "a_x": [1, 2, 3], "a_y": [1, 2, 3]})
|
||||
|
||||
result = df.merge(df, on=[df.index.year], how="inner")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_single_common_level(self):
|
||||
index_left = MultiIndex.from_tuples(
|
||||
[("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
|
||||
)
|
||||
|
||||
left = DataFrame(
|
||||
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=index_left
|
||||
)
|
||||
|
||||
index_right = MultiIndex.from_tuples(
|
||||
[("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
|
||||
)
|
||||
|
||||
right = DataFrame(
|
||||
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
|
||||
index=index_right,
|
||||
)
|
||||
|
||||
result = left.join(right)
|
||||
expected = merge(
|
||||
left.reset_index(), right.reset_index(), on=["key"], how="inner"
|
||||
).set_index(["key", "X", "Y"])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_join_multi_wrong_order(self):
|
||||
# GH 25760
|
||||
# GH 28956
|
||||
|
||||
midx1 = MultiIndex.from_product([[1, 2], [3, 4]], names=["a", "b"])
|
||||
midx3 = MultiIndex.from_tuples([(4, 1), (3, 2), (3, 1)], names=["b", "a"])
|
||||
|
||||
left = DataFrame(index=midx1, data={"x": [10, 20, 30, 40]})
|
||||
right = DataFrame(index=midx3, data={"y": ["foo", "bar", "fing"]})
|
||||
|
||||
result = left.join(right)
|
||||
|
||||
expected = DataFrame(
|
||||
index=midx1,
|
||||
data={"x": [10, 20, 30, 40], "y": ["fing", "foo", "bar", np.nan]},
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,893 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
CategoricalDtype,
|
||||
CategoricalIndex,
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
crosstab,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def df():
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": [
|
||||
"foo",
|
||||
"foo",
|
||||
"foo",
|
||||
"foo",
|
||||
"bar",
|
||||
"bar",
|
||||
"bar",
|
||||
"bar",
|
||||
"foo",
|
||||
"foo",
|
||||
"foo",
|
||||
],
|
||||
"B": [
|
||||
"one",
|
||||
"one",
|
||||
"one",
|
||||
"two",
|
||||
"one",
|
||||
"one",
|
||||
"one",
|
||||
"two",
|
||||
"two",
|
||||
"two",
|
||||
"one",
|
||||
],
|
||||
"C": [
|
||||
"dull",
|
||||
"dull",
|
||||
"shiny",
|
||||
"dull",
|
||||
"dull",
|
||||
"shiny",
|
||||
"shiny",
|
||||
"dull",
|
||||
"shiny",
|
||||
"shiny",
|
||||
"shiny",
|
||||
],
|
||||
"D": np.random.default_rng(2).standard_normal(11),
|
||||
"E": np.random.default_rng(2).standard_normal(11),
|
||||
"F": np.random.default_rng(2).standard_normal(11),
|
||||
}
|
||||
)
|
||||
|
||||
return pd.concat([df, df], ignore_index=True)
|
||||
|
||||
|
||||
class TestCrosstab:
|
||||
def test_crosstab_single(self, df):
|
||||
result = crosstab(df["A"], df["C"])
|
||||
expected = df.groupby(["A", "C"]).size().unstack()
|
||||
tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64))
|
||||
|
||||
def test_crosstab_multiple(self, df):
|
||||
result = crosstab(df["A"], [df["B"], df["C"]])
|
||||
expected = df.groupby(["A", "B", "C"]).size()
|
||||
expected = expected.unstack("B").unstack("C").fillna(0).astype(np.int64)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = crosstab([df["B"], df["C"]], df["A"])
|
||||
expected = df.groupby(["B", "C", "A"]).size()
|
||||
expected = expected.unstack("A").fillna(0).astype(np.int64)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("box", [np.array, list, tuple])
|
||||
def test_crosstab_ndarray(self, box):
|
||||
# GH 44076
|
||||
a = box(np.random.default_rng(2).integers(0, 5, size=100))
|
||||
b = box(np.random.default_rng(2).integers(0, 3, size=100))
|
||||
c = box(np.random.default_rng(2).integers(0, 10, size=100))
|
||||
|
||||
df = DataFrame({"a": a, "b": b, "c": c})
|
||||
|
||||
result = crosstab(a, [b, c], rownames=["a"], colnames=("b", "c"))
|
||||
expected = crosstab(df["a"], [df["b"], df["c"]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = crosstab([b, c], a, colnames=["a"], rownames=("b", "c"))
|
||||
expected = crosstab([df["b"], df["c"]], df["a"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# assign arbitrary names
|
||||
result = crosstab(a, c)
|
||||
expected = crosstab(df["a"], df["c"])
|
||||
expected.index.names = ["row_0"]
|
||||
expected.columns.names = ["col_0"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_non_aligned(self):
|
||||
# GH 17005
|
||||
a = Series([0, 1, 1], index=["a", "b", "c"])
|
||||
b = Series([3, 4, 3, 4, 3], index=["a", "b", "c", "d", "f"])
|
||||
c = np.array([3, 4, 3], dtype=np.int64)
|
||||
|
||||
expected = DataFrame(
|
||||
[[1, 0], [1, 1]],
|
||||
index=Index([0, 1], name="row_0"),
|
||||
columns=Index([3, 4], name="col_0"),
|
||||
)
|
||||
|
||||
result = crosstab(a, b)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = crosstab(a, c)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_margins(self):
|
||||
a = np.random.default_rng(2).integers(0, 7, size=100)
|
||||
b = np.random.default_rng(2).integers(0, 3, size=100)
|
||||
c = np.random.default_rng(2).integers(0, 5, size=100)
|
||||
|
||||
df = DataFrame({"a": a, "b": b, "c": c})
|
||||
|
||||
result = crosstab(a, [b, c], rownames=["a"], colnames=("b", "c"), margins=True)
|
||||
|
||||
assert result.index.names == ("a",)
|
||||
assert result.columns.names == ["b", "c"]
|
||||
|
||||
all_cols = result["All", ""]
|
||||
exp_cols = df.groupby(["a"]).size().astype("i8")
|
||||
# to keep index.name
|
||||
exp_margin = Series([len(df)], index=Index(["All"], name="a"))
|
||||
exp_cols = pd.concat([exp_cols, exp_margin])
|
||||
exp_cols.name = ("All", "")
|
||||
|
||||
tm.assert_series_equal(all_cols, exp_cols)
|
||||
|
||||
all_rows = result.loc["All"]
|
||||
exp_rows = df.groupby(["b", "c"]).size().astype("i8")
|
||||
exp_rows = pd.concat([exp_rows, Series([len(df)], index=[("All", "")])])
|
||||
exp_rows.name = "All"
|
||||
|
||||
exp_rows = exp_rows.reindex(all_rows.index)
|
||||
exp_rows = exp_rows.fillna(0).astype(np.int64)
|
||||
tm.assert_series_equal(all_rows, exp_rows)
|
||||
|
||||
def test_crosstab_margins_set_margin_name(self):
|
||||
# GH 15972
|
||||
a = np.random.default_rng(2).integers(0, 7, size=100)
|
||||
b = np.random.default_rng(2).integers(0, 3, size=100)
|
||||
c = np.random.default_rng(2).integers(0, 5, size=100)
|
||||
|
||||
df = DataFrame({"a": a, "b": b, "c": c})
|
||||
|
||||
result = crosstab(
|
||||
a,
|
||||
[b, c],
|
||||
rownames=["a"],
|
||||
colnames=("b", "c"),
|
||||
margins=True,
|
||||
margins_name="TOTAL",
|
||||
)
|
||||
|
||||
assert result.index.names == ("a",)
|
||||
assert result.columns.names == ["b", "c"]
|
||||
|
||||
all_cols = result["TOTAL", ""]
|
||||
exp_cols = df.groupby(["a"]).size().astype("i8")
|
||||
# to keep index.name
|
||||
exp_margin = Series([len(df)], index=Index(["TOTAL"], name="a"))
|
||||
exp_cols = pd.concat([exp_cols, exp_margin])
|
||||
exp_cols.name = ("TOTAL", "")
|
||||
|
||||
tm.assert_series_equal(all_cols, exp_cols)
|
||||
|
||||
all_rows = result.loc["TOTAL"]
|
||||
exp_rows = df.groupby(["b", "c"]).size().astype("i8")
|
||||
exp_rows = pd.concat([exp_rows, Series([len(df)], index=[("TOTAL", "")])])
|
||||
exp_rows.name = "TOTAL"
|
||||
|
||||
exp_rows = exp_rows.reindex(all_rows.index)
|
||||
exp_rows = exp_rows.fillna(0).astype(np.int64)
|
||||
tm.assert_series_equal(all_rows, exp_rows)
|
||||
|
||||
msg = "margins_name argument must be a string"
|
||||
for margins_name in [666, None, ["a", "b"]]:
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
crosstab(
|
||||
a,
|
||||
[b, c],
|
||||
rownames=["a"],
|
||||
colnames=("b", "c"),
|
||||
margins=True,
|
||||
margins_name=margins_name,
|
||||
)
|
||||
|
||||
def test_crosstab_pass_values(self):
|
||||
a = np.random.default_rng(2).integers(0, 7, size=100)
|
||||
b = np.random.default_rng(2).integers(0, 3, size=100)
|
||||
c = np.random.default_rng(2).integers(0, 5, size=100)
|
||||
values = np.random.default_rng(2).standard_normal(100)
|
||||
|
||||
table = crosstab(
|
||||
[a, b], c, values, aggfunc="sum", rownames=["foo", "bar"], colnames=["baz"]
|
||||
)
|
||||
|
||||
df = DataFrame({"foo": a, "bar": b, "baz": c, "values": values})
|
||||
|
||||
expected = df.pivot_table(
|
||||
"values", index=["foo", "bar"], columns="baz", aggfunc="sum"
|
||||
)
|
||||
tm.assert_frame_equal(table, expected)
|
||||
|
||||
def test_crosstab_dropna(self):
|
||||
# GH 3820
|
||||
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object)
|
||||
b = np.array(["one", "one", "two", "one", "two", "two", "two"], dtype=object)
|
||||
c = np.array(
|
||||
["dull", "dull", "dull", "dull", "dull", "shiny", "shiny"], dtype=object
|
||||
)
|
||||
res = crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"], dropna=False)
|
||||
m = MultiIndex.from_tuples(
|
||||
[("one", "dull"), ("one", "shiny"), ("two", "dull"), ("two", "shiny")],
|
||||
names=["b", "c"],
|
||||
)
|
||||
tm.assert_index_equal(res.columns, m)
|
||||
|
||||
def test_crosstab_no_overlap(self):
|
||||
# GS 10291
|
||||
|
||||
s1 = Series([1, 2, 3], index=[1, 2, 3])
|
||||
s2 = Series([4, 5, 6], index=[4, 5, 6])
|
||||
|
||||
actual = crosstab(s1, s2)
|
||||
expected = DataFrame(
|
||||
index=Index([], dtype="int64", name="row_0"),
|
||||
columns=Index([], dtype="int64", name="col_0"),
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_margin_dropna(self):
|
||||
# GH 12577
|
||||
# pivot_table counts null into margin ('All')
|
||||
# when margins=true and dropna=true
|
||||
|
||||
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]})
|
||||
actual = crosstab(df.a, df.b, margins=True, dropna=True)
|
||||
expected = DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]])
|
||||
expected.index = Index([1.0, 2.0, "All"], name="a")
|
||||
expected.columns = Index([3, 4, "All"], name="b")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_margin_dropna2(self):
|
||||
df = DataFrame(
|
||||
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]}
|
||||
)
|
||||
actual = crosstab(df.a, df.b, margins=True, dropna=True)
|
||||
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
|
||||
expected.index = Index([1.0, 2.0, "All"], name="a")
|
||||
expected.columns = Index([3.0, 4.0, "All"], name="b")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_margin_dropna3(self):
|
||||
df = DataFrame(
|
||||
{"a": [1, np.nan, np.nan, np.nan, np.nan, 2], "b": [3, 3, 4, 4, 4, 4]}
|
||||
)
|
||||
actual = crosstab(df.a, df.b, margins=True, dropna=True)
|
||||
expected = DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
|
||||
expected.index = Index([1.0, 2.0, "All"], name="a")
|
||||
expected.columns = Index([3, 4, "All"], name="b")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_margin_dropna4(self):
|
||||
# GH 12642
|
||||
# _add_margins raises KeyError: Level None not found
|
||||
# when margins=True and dropna=False
|
||||
# GH: 10772: Keep np.nan in result with dropna=False
|
||||
df = DataFrame({"a": [1, 2, 2, 2, 2, np.nan], "b": [3, 3, 4, 4, 4, 4]})
|
||||
actual = crosstab(df.a, df.b, margins=True, dropna=False)
|
||||
expected = DataFrame([[1, 0, 1.0], [1, 3, 4.0], [0, 1, np.nan], [2, 4, 6.0]])
|
||||
expected.index = Index([1.0, 2.0, np.nan, "All"], name="a")
|
||||
expected.columns = Index([3, 4, "All"], name="b")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_margin_dropna5(self):
|
||||
# GH: 10772: Keep np.nan in result with dropna=False
|
||||
df = DataFrame(
|
||||
{"a": [1, np.nan, np.nan, np.nan, 2, np.nan], "b": [3, np.nan, 4, 4, 4, 4]}
|
||||
)
|
||||
actual = crosstab(df.a, df.b, margins=True, dropna=False)
|
||||
expected = DataFrame(
|
||||
[[1, 0, 0, 1.0], [0, 1, 0, 1.0], [0, 3, 1, np.nan], [1, 4, 0, 6.0]]
|
||||
)
|
||||
expected.index = Index([1.0, 2.0, np.nan, "All"], name="a")
|
||||
expected.columns = Index([3.0, 4.0, np.nan, "All"], name="b")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_margin_dropna6(self):
|
||||
# GH: 10772: Keep np.nan in result with dropna=False
|
||||
a = np.array(["foo", "foo", "foo", "bar", "bar", "foo", "foo"], dtype=object)
|
||||
b = np.array(["one", "one", "two", "one", "two", np.nan, "two"], dtype=object)
|
||||
c = np.array(
|
||||
["dull", "dull", "dull", "dull", "dull", "shiny", "shiny"], dtype=object
|
||||
)
|
||||
|
||||
actual = crosstab(
|
||||
a, [b, c], rownames=["a"], colnames=["b", "c"], margins=True, dropna=False
|
||||
)
|
||||
m = MultiIndex.from_arrays(
|
||||
[
|
||||
["one", "one", "two", "two", np.nan, np.nan, "All"],
|
||||
["dull", "shiny", "dull", "shiny", "dull", "shiny", ""],
|
||||
],
|
||||
names=["b", "c"],
|
||||
)
|
||||
expected = DataFrame(
|
||||
[[1, 0, 1, 0, 0, 0, 2], [2, 0, 1, 1, 0, 1, 5], [3, 0, 2, 1, 0, 0, 7]],
|
||||
columns=m,
|
||||
)
|
||||
expected.index = Index(["bar", "foo", "All"], name="a")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
actual = crosstab(
|
||||
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=False
|
||||
)
|
||||
m = MultiIndex.from_arrays(
|
||||
[
|
||||
["bar", "bar", "bar", "foo", "foo", "foo", "All"],
|
||||
["one", "two", np.nan, "one", "two", np.nan, ""],
|
||||
],
|
||||
names=["a", "b"],
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[1, 0, 1.0],
|
||||
[1, 0, 1.0],
|
||||
[0, 0, np.nan],
|
||||
[2, 0, 2.0],
|
||||
[1, 1, 2.0],
|
||||
[0, 1, np.nan],
|
||||
[5, 2, 7.0],
|
||||
],
|
||||
index=m,
|
||||
)
|
||||
expected.columns = Index(["dull", "shiny", "All"], name="c")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
actual = crosstab(
|
||||
[a, b], c, rownames=["a", "b"], colnames=["c"], margins=True, dropna=True
|
||||
)
|
||||
m = MultiIndex.from_arrays(
|
||||
[["bar", "bar", "foo", "foo", "All"], ["one", "two", "one", "two", ""]],
|
||||
names=["a", "b"],
|
||||
)
|
||||
expected = DataFrame(
|
||||
[[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 1, 6]], index=m
|
||||
)
|
||||
expected.columns = Index(["dull", "shiny", "All"], name="c")
|
||||
tm.assert_frame_equal(actual, expected)
|
||||
|
||||
def test_crosstab_normalize(self):
|
||||
# Issue 12578
|
||||
df = DataFrame(
|
||||
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]}
|
||||
)
|
||||
|
||||
rindex = Index([1, 2], name="a")
|
||||
cindex = Index([3, 4], name="b")
|
||||
full_normal = DataFrame([[0.2, 0], [0.2, 0.6]], index=rindex, columns=cindex)
|
||||
row_normal = DataFrame([[1.0, 0], [0.25, 0.75]], index=rindex, columns=cindex)
|
||||
col_normal = DataFrame([[0.5, 0], [0.5, 1.0]], index=rindex, columns=cindex)
|
||||
|
||||
# Check all normalize args
|
||||
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="all"), full_normal)
|
||||
tm.assert_frame_equal(crosstab(df.a, df.b, normalize=True), full_normal)
|
||||
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="index"), row_normal)
|
||||
tm.assert_frame_equal(crosstab(df.a, df.b, normalize="columns"), col_normal)
|
||||
tm.assert_frame_equal(
|
||||
crosstab(df.a, df.b, normalize=1),
|
||||
crosstab(df.a, df.b, normalize="columns"),
|
||||
)
|
||||
tm.assert_frame_equal(
|
||||
crosstab(df.a, df.b, normalize=0), crosstab(df.a, df.b, normalize="index")
|
||||
)
|
||||
|
||||
row_normal_margins = DataFrame(
|
||||
[[1.0, 0], [0.25, 0.75], [0.4, 0.6]],
|
||||
index=Index([1, 2, "All"], name="a", dtype="object"),
|
||||
columns=Index([3, 4], name="b", dtype="object"),
|
||||
)
|
||||
col_normal_margins = DataFrame(
|
||||
[[0.5, 0, 0.2], [0.5, 1.0, 0.8]],
|
||||
index=Index([1, 2], name="a", dtype="object"),
|
||||
columns=Index([3, 4, "All"], name="b", dtype="object"),
|
||||
)
|
||||
|
||||
all_normal_margins = DataFrame(
|
||||
[[0.2, 0, 0.2], [0.2, 0.6, 0.8], [0.4, 0.6, 1]],
|
||||
index=Index([1, 2, "All"], name="a", dtype="object"),
|
||||
columns=Index([3, 4, "All"], name="b", dtype="object"),
|
||||
)
|
||||
tm.assert_frame_equal(
|
||||
crosstab(df.a, df.b, normalize="index", margins=True), row_normal_margins
|
||||
)
|
||||
tm.assert_frame_equal(
|
||||
crosstab(df.a, df.b, normalize="columns", margins=True), col_normal_margins
|
||||
)
|
||||
tm.assert_frame_equal(
|
||||
crosstab(df.a, df.b, normalize=True, margins=True), all_normal_margins
|
||||
)
|
||||
|
||||
def test_crosstab_normalize_arrays(self):
|
||||
# GH#12578
|
||||
df = DataFrame(
|
||||
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]}
|
||||
)
|
||||
|
||||
# Test arrays
|
||||
crosstab(
|
||||
[np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])], np.array([1, 2, 1, 2])
|
||||
)
|
||||
|
||||
# Test with aggfunc
|
||||
norm_counts = DataFrame(
|
||||
[[0.25, 0, 0.25], [0.25, 0.5, 0.75], [0.5, 0.5, 1]],
|
||||
index=Index([1, 2, "All"], name="a", dtype="object"),
|
||||
columns=Index([3, 4, "All"], name="b"),
|
||||
)
|
||||
test_case = crosstab(
|
||||
df.a, df.b, df.c, aggfunc="count", normalize="all", margins=True
|
||||
)
|
||||
tm.assert_frame_equal(test_case, norm_counts)
|
||||
|
||||
df = DataFrame(
|
||||
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [0, 4, np.nan, 3, 3]}
|
||||
)
|
||||
|
||||
norm_sum = DataFrame(
|
||||
[[0, 0, 0.0], [0.4, 0.6, 1], [0.4, 0.6, 1]],
|
||||
index=Index([1, 2, "All"], name="a", dtype="object"),
|
||||
columns=Index([3, 4, "All"], name="b", dtype="object"),
|
||||
)
|
||||
msg = "using DataFrameGroupBy.sum"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
test_case = crosstab(
|
||||
df.a, df.b, df.c, aggfunc=np.sum, normalize="all", margins=True
|
||||
)
|
||||
tm.assert_frame_equal(test_case, norm_sum)
|
||||
|
||||
def test_crosstab_with_empties(self, using_array_manager):
|
||||
# Check handling of empties
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": [1, 2, 2, 2, 2],
|
||||
"b": [3, 3, 4, 4, 4],
|
||||
"c": [np.nan, np.nan, np.nan, np.nan, np.nan],
|
||||
}
|
||||
)
|
||||
|
||||
empty = DataFrame(
|
||||
[[0.0, 0.0], [0.0, 0.0]],
|
||||
index=Index([1, 2], name="a", dtype="int64"),
|
||||
columns=Index([3, 4], name="b"),
|
||||
)
|
||||
|
||||
for i in [True, "index", "columns"]:
|
||||
calculated = crosstab(df.a, df.b, values=df.c, aggfunc="count", normalize=i)
|
||||
tm.assert_frame_equal(empty, calculated)
|
||||
|
||||
nans = DataFrame(
|
||||
[[0.0, np.nan], [0.0, 0.0]],
|
||||
index=Index([1, 2], name="a", dtype="int64"),
|
||||
columns=Index([3, 4], name="b"),
|
||||
)
|
||||
if using_array_manager:
|
||||
# INFO(ArrayManager) column without NaNs can preserve int dtype
|
||||
nans[3] = nans[3].astype("int64")
|
||||
|
||||
calculated = crosstab(df.a, df.b, values=df.c, aggfunc="count", normalize=False)
|
||||
tm.assert_frame_equal(nans, calculated)
|
||||
|
||||
def test_crosstab_errors(self):
|
||||
# Issue 12578
|
||||
|
||||
df = DataFrame(
|
||||
{"a": [1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4], "c": [1, 1, np.nan, 1, 1]}
|
||||
)
|
||||
|
||||
error = "values cannot be used without an aggfunc."
|
||||
with pytest.raises(ValueError, match=error):
|
||||
crosstab(df.a, df.b, values=df.c)
|
||||
|
||||
error = "aggfunc cannot be used without values"
|
||||
with pytest.raises(ValueError, match=error):
|
||||
crosstab(df.a, df.b, aggfunc=np.mean)
|
||||
|
||||
error = "Not a valid normalize argument"
|
||||
with pytest.raises(ValueError, match=error):
|
||||
crosstab(df.a, df.b, normalize="42")
|
||||
|
||||
with pytest.raises(ValueError, match=error):
|
||||
crosstab(df.a, df.b, normalize=42)
|
||||
|
||||
error = "Not a valid margins argument"
|
||||
with pytest.raises(ValueError, match=error):
|
||||
crosstab(df.a, df.b, normalize="all", margins=42)
|
||||
|
||||
def test_crosstab_with_categorial_columns(self):
|
||||
# GH 8860
|
||||
df = DataFrame(
|
||||
{
|
||||
"MAKE": ["Honda", "Acura", "Tesla", "Honda", "Honda", "Acura"],
|
||||
"MODEL": ["Sedan", "Sedan", "Electric", "Pickup", "Sedan", "Sedan"],
|
||||
}
|
||||
)
|
||||
categories = ["Sedan", "Electric", "Pickup"]
|
||||
df["MODEL"] = df["MODEL"].astype("category").cat.set_categories(categories)
|
||||
result = crosstab(df["MAKE"], df["MODEL"])
|
||||
|
||||
expected_index = Index(["Acura", "Honda", "Tesla"], name="MAKE")
|
||||
expected_columns = CategoricalIndex(
|
||||
categories, categories=categories, ordered=False, name="MODEL"
|
||||
)
|
||||
expected_data = [[2, 0, 0], [2, 0, 1], [0, 1, 0]]
|
||||
expected = DataFrame(
|
||||
expected_data, index=expected_index, columns=expected_columns
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_with_numpy_size(self):
|
||||
# GH 4003
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["one", "one", "two", "three"] * 6,
|
||||
"B": ["A", "B", "C"] * 8,
|
||||
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
|
||||
"D": np.random.default_rng(2).standard_normal(24),
|
||||
"E": np.random.default_rng(2).standard_normal(24),
|
||||
}
|
||||
)
|
||||
result = crosstab(
|
||||
index=[df["A"], df["B"]],
|
||||
columns=[df["C"]],
|
||||
margins=True,
|
||||
aggfunc=np.size,
|
||||
values=df["D"],
|
||||
)
|
||||
expected_index = MultiIndex(
|
||||
levels=[["All", "one", "three", "two"], ["", "A", "B", "C"]],
|
||||
codes=[[1, 1, 1, 2, 2, 2, 3, 3, 3, 0], [1, 2, 3, 1, 2, 3, 1, 2, 3, 0]],
|
||||
names=["A", "B"],
|
||||
)
|
||||
expected_column = Index(["bar", "foo", "All"], dtype="object", name="C")
|
||||
expected_data = np.array(
|
||||
[
|
||||
[2.0, 2.0, 4.0],
|
||||
[2.0, 2.0, 4.0],
|
||||
[2.0, 2.0, 4.0],
|
||||
[2.0, np.nan, 2.0],
|
||||
[np.nan, 2.0, 2.0],
|
||||
[2.0, np.nan, 2.0],
|
||||
[np.nan, 2.0, 2.0],
|
||||
[2.0, np.nan, 2.0],
|
||||
[np.nan, 2.0, 2.0],
|
||||
[12.0, 12.0, 24.0],
|
||||
]
|
||||
)
|
||||
expected = DataFrame(
|
||||
expected_data, index=expected_index, columns=expected_column
|
||||
)
|
||||
# aggfunc is np.size, resulting in integers
|
||||
expected["All"] = expected["All"].astype("int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_duplicate_names(self):
|
||||
# GH 13279 / 22529
|
||||
|
||||
s1 = Series(range(3), name="foo")
|
||||
s2_foo = Series(range(1, 4), name="foo")
|
||||
s2_bar = Series(range(1, 4), name="bar")
|
||||
s3 = Series(range(3), name="waldo")
|
||||
|
||||
# check result computed with duplicate labels against
|
||||
# result computed with unique labels, then relabelled
|
||||
mapper = {"bar": "foo"}
|
||||
|
||||
# duplicate row, column labels
|
||||
result = crosstab(s1, s2_foo)
|
||||
expected = crosstab(s1, s2_bar).rename_axis(columns=mapper, axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# duplicate row, unique column labels
|
||||
result = crosstab([s1, s2_foo], s3)
|
||||
expected = crosstab([s1, s2_bar], s3).rename_axis(index=mapper, axis=0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# unique row, duplicate column labels
|
||||
result = crosstab(s3, [s1, s2_foo])
|
||||
expected = crosstab(s3, [s1, s2_bar]).rename_axis(columns=mapper, axis=1)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("names", [["a", ("b", "c")], [("a", "b"), "c"]])
|
||||
def test_crosstab_tuple_name(self, names):
|
||||
s1 = Series(range(3), name=names[0])
|
||||
s2 = Series(range(1, 4), name=names[1])
|
||||
|
||||
mi = MultiIndex.from_arrays([range(3), range(1, 4)], names=names)
|
||||
expected = Series(1, index=mi).unstack(1, fill_value=0)
|
||||
|
||||
result = crosstab(s1, s2)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_both_tuple_names(self):
|
||||
# GH 18321
|
||||
s1 = Series(range(3), name=("a", "b"))
|
||||
s2 = Series(range(3), name=("c", "d"))
|
||||
|
||||
expected = DataFrame(
|
||||
np.eye(3, dtype="int64"),
|
||||
index=Index(range(3), name=("a", "b")),
|
||||
columns=Index(range(3), name=("c", "d")),
|
||||
)
|
||||
result = crosstab(s1, s2)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_unsorted_order(self):
|
||||
df = DataFrame({"b": [3, 1, 2], "a": [5, 4, 6]}, index=["C", "A", "B"])
|
||||
result = crosstab(df.index, [df.b, df.a])
|
||||
e_idx = Index(["A", "B", "C"], name="row_0")
|
||||
e_columns = MultiIndex.from_tuples([(1, 4), (2, 6), (3, 5)], names=["b", "a"])
|
||||
expected = DataFrame(
|
||||
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], index=e_idx, columns=e_columns
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_crosstab_normalize_multiple_columns(self):
|
||||
# GH 15150
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["one", "one", "two", "three"] * 6,
|
||||
"B": ["A", "B", "C"] * 8,
|
||||
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
|
||||
"D": [0] * 24,
|
||||
"E": [0] * 24,
|
||||
}
|
||||
)
|
||||
|
||||
msg = "using DataFrameGroupBy.sum"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
result = crosstab(
|
||||
[df.A, df.B],
|
||||
df.C,
|
||||
values=df.D,
|
||||
aggfunc=np.sum,
|
||||
normalize=True,
|
||||
margins=True,
|
||||
)
|
||||
expected = DataFrame(
|
||||
np.array([0] * 29 + [1], dtype=float).reshape(10, 3),
|
||||
columns=Index(["bar", "foo", "All"], dtype="object", name="C"),
|
||||
index=MultiIndex.from_tuples(
|
||||
[
|
||||
("one", "A"),
|
||||
("one", "B"),
|
||||
("one", "C"),
|
||||
("three", "A"),
|
||||
("three", "B"),
|
||||
("three", "C"),
|
||||
("two", "A"),
|
||||
("two", "B"),
|
||||
("two", "C"),
|
||||
("All", ""),
|
||||
],
|
||||
names=["A", "B"],
|
||||
),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_margin_normalize(self):
|
||||
# GH 27500
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],
|
||||
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"],
|
||||
"C": [
|
||||
"small",
|
||||
"large",
|
||||
"large",
|
||||
"small",
|
||||
"small",
|
||||
"large",
|
||||
"small",
|
||||
"small",
|
||||
"large",
|
||||
],
|
||||
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
|
||||
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9],
|
||||
}
|
||||
)
|
||||
# normalize on index
|
||||
result = crosstab(
|
||||
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=0
|
||||
)
|
||||
expected = DataFrame(
|
||||
[[0.5, 0.5], [0.5, 0.5], [0.666667, 0.333333], [0, 1], [0.444444, 0.555556]]
|
||||
)
|
||||
expected.index = MultiIndex(
|
||||
levels=[["Sub-Total", "bar", "foo"], ["", "one", "two"]],
|
||||
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]],
|
||||
names=["A", "B"],
|
||||
)
|
||||
expected.columns = Index(["large", "small"], dtype="object", name="C")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# normalize on columns
|
||||
result = crosstab(
|
||||
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=1
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[0.25, 0.2, 0.222222],
|
||||
[0.25, 0.2, 0.222222],
|
||||
[0.5, 0.2, 0.333333],
|
||||
[0, 0.4, 0.222222],
|
||||
]
|
||||
)
|
||||
expected.columns = Index(
|
||||
["large", "small", "Sub-Total"], dtype="object", name="C"
|
||||
)
|
||||
expected.index = MultiIndex(
|
||||
levels=[["bar", "foo"], ["one", "two"]],
|
||||
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
|
||||
names=["A", "B"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# normalize on both index and column
|
||||
result = crosstab(
|
||||
[df.A, df.B], df.C, margins=True, margins_name="Sub-Total", normalize=True
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[0.111111, 0.111111, 0.222222],
|
||||
[0.111111, 0.111111, 0.222222],
|
||||
[0.222222, 0.111111, 0.333333],
|
||||
[0.000000, 0.222222, 0.222222],
|
||||
[0.444444, 0.555555, 1],
|
||||
]
|
||||
)
|
||||
expected.columns = Index(
|
||||
["large", "small", "Sub-Total"], dtype="object", name="C"
|
||||
)
|
||||
expected.index = MultiIndex(
|
||||
levels=[["Sub-Total", "bar", "foo"], ["", "one", "two"]],
|
||||
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]],
|
||||
names=["A", "B"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_margin_normalize_multiple_columns(self):
|
||||
# GH 35144
|
||||
# use multiple columns with margins and normalization
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"],
|
||||
"B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"],
|
||||
"C": [
|
||||
"small",
|
||||
"large",
|
||||
"large",
|
||||
"small",
|
||||
"small",
|
||||
"large",
|
||||
"small",
|
||||
"small",
|
||||
"large",
|
||||
],
|
||||
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
|
||||
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9],
|
||||
}
|
||||
)
|
||||
result = crosstab(
|
||||
index=df.C,
|
||||
columns=[df.A, df.B],
|
||||
margins=True,
|
||||
margins_name="margin",
|
||||
normalize=True,
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[0.111111, 0.111111, 0.222222, 0.000000, 0.444444],
|
||||
[0.111111, 0.111111, 0.111111, 0.222222, 0.555556],
|
||||
[0.222222, 0.222222, 0.333333, 0.222222, 1.0],
|
||||
],
|
||||
index=["large", "small", "margin"],
|
||||
)
|
||||
expected.columns = MultiIndex(
|
||||
levels=[["bar", "foo", "margin"], ["", "one", "two"]],
|
||||
codes=[[0, 0, 1, 1, 2], [1, 2, 1, 2, 0]],
|
||||
names=["A", "B"],
|
||||
)
|
||||
expected.index.name = "C"
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_margin_support_Float(self):
|
||||
# GH 50313
|
||||
# use Float64 formats and function aggfunc with margins
|
||||
df = DataFrame(
|
||||
{"A": [1, 2, 2, 1], "B": [3, 3, 4, 5], "C": [-1.0, 10.0, 1.0, 10.0]},
|
||||
dtype="Float64",
|
||||
)
|
||||
result = crosstab(
|
||||
df["A"],
|
||||
df["B"],
|
||||
values=df["C"],
|
||||
aggfunc="sum",
|
||||
margins=True,
|
||||
)
|
||||
expected = DataFrame(
|
||||
[
|
||||
[-1.0, pd.NA, 10.0, 9.0],
|
||||
[10.0, 1.0, pd.NA, 11.0],
|
||||
[9.0, 1.0, 10.0, 20.0],
|
||||
],
|
||||
index=Index([1.0, 2.0, "All"], dtype="object", name="A"),
|
||||
columns=Index([3.0, 4.0, 5.0, "All"], dtype="object", name="B"),
|
||||
dtype="Float64",
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_margin_with_ordered_categorical_column(self):
|
||||
# GH 25278
|
||||
df = DataFrame(
|
||||
{
|
||||
"First": ["B", "B", "C", "A", "B", "C"],
|
||||
"Second": ["C", "B", "B", "B", "C", "A"],
|
||||
}
|
||||
)
|
||||
df["First"] = df["First"].astype(CategoricalDtype(ordered=True))
|
||||
customized_categories_order = ["C", "A", "B"]
|
||||
df["First"] = df["First"].cat.reorder_categories(customized_categories_order)
|
||||
result = crosstab(df["First"], df["Second"], margins=True)
|
||||
|
||||
expected_index = Index(["C", "A", "B", "All"], name="First")
|
||||
expected_columns = Index(["A", "B", "C", "All"], name="Second")
|
||||
expected_data = [[1, 1, 0, 2], [0, 1, 0, 1], [0, 1, 2, 3], [1, 3, 2, 6]]
|
||||
expected = DataFrame(
|
||||
expected_data, index=expected_index, columns=expected_columns
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("a_dtype", ["category", "int64"])
|
||||
@pytest.mark.parametrize("b_dtype", ["category", "int64"])
|
||||
def test_categoricals(a_dtype, b_dtype):
|
||||
# https://github.com/pandas-dev/pandas/issues/37465
|
||||
g = np.random.default_rng(2)
|
||||
a = Series(g.integers(0, 3, size=100)).astype(a_dtype)
|
||||
b = Series(g.integers(0, 2, size=100)).astype(b_dtype)
|
||||
result = crosstab(a, b, margins=True, dropna=False)
|
||||
columns = Index([0, 1, "All"], dtype="object", name="col_0")
|
||||
index = Index([0, 1, 2, "All"], dtype="object", name="row_0")
|
||||
values = [[10, 18, 28], [23, 16, 39], [17, 16, 33], [50, 50, 100]]
|
||||
expected = DataFrame(values, index, columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# Verify when categorical does not have all values present
|
||||
a.loc[a == 1] = 2
|
||||
a_is_cat = isinstance(a.dtype, CategoricalDtype)
|
||||
assert not a_is_cat or a.value_counts().loc[1] == 0
|
||||
result = crosstab(a, b, margins=True, dropna=False)
|
||||
values = [[10, 18, 28], [0, 0, 0], [40, 32, 72], [50, 50, 100]]
|
||||
expected = DataFrame(values, index, columns)
|
||||
if not a_is_cat:
|
||||
expected = expected.loc[[0, 2, "All"]]
|
||||
expected["All"] = expected["All"].astype("int64")
|
||||
repr(result)
|
||||
repr(expected)
|
||||
repr(expected.loc[[0, 2, "All"]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,761 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
DataFrame,
|
||||
DatetimeIndex,
|
||||
Index,
|
||||
Interval,
|
||||
IntervalIndex,
|
||||
Series,
|
||||
TimedeltaIndex,
|
||||
Timestamp,
|
||||
cut,
|
||||
date_range,
|
||||
interval_range,
|
||||
isna,
|
||||
qcut,
|
||||
timedelta_range,
|
||||
to_datetime,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import CategoricalDtype as CDT
|
||||
import pandas.core.reshape.tile as tmod
|
||||
|
||||
|
||||
def test_simple():
|
||||
data = np.ones(5, dtype="int64")
|
||||
result = cut(data, 4, labels=False)
|
||||
|
||||
expected = np.array([1, 1, 1, 1, 1])
|
||||
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("func", [list, np.array])
|
||||
def test_bins(func):
|
||||
data = func([0.2, 1.4, 2.5, 6.2, 9.7, 2.1])
|
||||
result, bins = cut(data, 3, retbins=True)
|
||||
|
||||
intervals = IntervalIndex.from_breaks(bins.round(3))
|
||||
intervals = intervals.take([0, 0, 0, 1, 2, 0])
|
||||
expected = Categorical(intervals, ordered=True)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7]))
|
||||
|
||||
|
||||
def test_right():
|
||||
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
|
||||
result, bins = cut(data, 4, right=True, retbins=True)
|
||||
|
||||
intervals = IntervalIndex.from_breaks(bins.round(3))
|
||||
expected = Categorical(intervals, ordered=True)
|
||||
expected = expected.take([0, 0, 0, 2, 3, 0, 0])
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7]))
|
||||
|
||||
|
||||
def test_no_right():
|
||||
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
|
||||
result, bins = cut(data, 4, right=False, retbins=True)
|
||||
|
||||
intervals = IntervalIndex.from_breaks(bins.round(3), closed="left")
|
||||
intervals = intervals.take([0, 0, 0, 2, 3, 0, 1])
|
||||
expected = Categorical(intervals, ordered=True)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095]))
|
||||
|
||||
|
||||
def test_bins_from_interval_index():
|
||||
c = cut(range(5), 3)
|
||||
expected = c
|
||||
result = cut(range(5), bins=expected.categories)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
expected = Categorical.from_codes(
|
||||
np.append(c.codes, -1), categories=c.categories, ordered=True
|
||||
)
|
||||
result = cut(range(6), bins=expected.categories)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
def test_bins_from_interval_index_doc_example():
|
||||
# Make sure we preserve the bins.
|
||||
ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
|
||||
c = cut(ages, bins=[0, 18, 35, 70])
|
||||
expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)])
|
||||
tm.assert_index_equal(c.categories, expected)
|
||||
|
||||
result = cut([25, 20, 50], bins=c.categories)
|
||||
tm.assert_index_equal(result.categories, expected)
|
||||
tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8"))
|
||||
|
||||
|
||||
def test_bins_not_overlapping_from_interval_index():
|
||||
# see gh-23980
|
||||
msg = "Overlapping IntervalIndex is not accepted"
|
||||
ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut([5, 6], bins=ii)
|
||||
|
||||
|
||||
def test_bins_not_monotonic():
|
||||
msg = "bins must increase monotonically"
|
||||
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(data, [0.1, 1.5, 1, 10])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, bins, expected",
|
||||
[
|
||||
(
|
||||
date_range("2017-12-31", periods=3),
|
||||
[Timestamp.min, Timestamp("2018-01-01"), Timestamp.max],
|
||||
IntervalIndex.from_tuples(
|
||||
[
|
||||
(Timestamp.min, Timestamp("2018-01-01")),
|
||||
(Timestamp("2018-01-01"), Timestamp.max),
|
||||
]
|
||||
),
|
||||
),
|
||||
(
|
||||
[-1, 0, 1],
|
||||
np.array(
|
||||
[np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64"
|
||||
),
|
||||
IntervalIndex.from_tuples(
|
||||
[(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)]
|
||||
),
|
||||
),
|
||||
(
|
||||
[
|
||||
np.timedelta64(-1, "ns"),
|
||||
np.timedelta64(0, "ns"),
|
||||
np.timedelta64(1, "ns"),
|
||||
],
|
||||
np.array(
|
||||
[
|
||||
np.timedelta64(-np.iinfo(np.int64).max, "ns"),
|
||||
np.timedelta64(0, "ns"),
|
||||
np.timedelta64(np.iinfo(np.int64).max, "ns"),
|
||||
]
|
||||
),
|
||||
IntervalIndex.from_tuples(
|
||||
[
|
||||
(
|
||||
np.timedelta64(-np.iinfo(np.int64).max, "ns"),
|
||||
np.timedelta64(0, "ns"),
|
||||
),
|
||||
(
|
||||
np.timedelta64(0, "ns"),
|
||||
np.timedelta64(np.iinfo(np.int64).max, "ns"),
|
||||
),
|
||||
]
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_bins_monotonic_not_overflowing(x, bins, expected):
|
||||
# GH 26045
|
||||
result = cut(x, bins)
|
||||
tm.assert_index_equal(result.categories, expected)
|
||||
|
||||
|
||||
def test_wrong_num_labels():
|
||||
msg = "Bin labels must be one fewer than the number of bin edges"
|
||||
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(data, [0, 1, 10], labels=["foo", "bar", "baz"])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x,bins,msg",
|
||||
[
|
||||
([], 2, "Cannot cut empty array"),
|
||||
([1, 2, 3], 0.5, "`bins` should be a positive integer"),
|
||||
],
|
||||
)
|
||||
def test_cut_corner(x, bins, msg):
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(x, bins)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))])
|
||||
@pytest.mark.parametrize("cut_func", [cut, qcut])
|
||||
def test_cut_not_1d_arg(arg, cut_func):
|
||||
msg = "Input array must be 1 dimensional"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut_func(arg, 2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data",
|
||||
[
|
||||
[0, 1, 2, 3, 4, np.inf],
|
||||
[-np.inf, 0, 1, 2, 3, 4],
|
||||
[-np.inf, 0, 1, 2, 3, 4, np.inf],
|
||||
],
|
||||
)
|
||||
def test_int_bins_with_inf(data):
|
||||
# GH 24314
|
||||
msg = "cannot specify integer `bins` when input data contains infinity"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(data, bins=3)
|
||||
|
||||
|
||||
def test_cut_out_of_range_more():
|
||||
# see gh-1511
|
||||
name = "x"
|
||||
|
||||
ser = Series([0, -1, 0, 1, -3], name=name)
|
||||
ind = cut(ser, [0, 1], labels=False)
|
||||
|
||||
exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name)
|
||||
tm.assert_series_equal(ind, exp)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"right,breaks,closed",
|
||||
[
|
||||
(True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"),
|
||||
(False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"),
|
||||
],
|
||||
)
|
||||
def test_labels(right, breaks, closed):
|
||||
arr = np.tile(np.arange(0, 1.01, 0.1), 4)
|
||||
|
||||
result, bins = cut(arr, 4, retbins=True, right=right)
|
||||
ex_levels = IntervalIndex.from_breaks(breaks, closed=closed)
|
||||
tm.assert_index_equal(result.categories, ex_levels)
|
||||
|
||||
|
||||
def test_cut_pass_series_name_to_factor():
|
||||
name = "foo"
|
||||
ser = Series(np.random.default_rng(2).standard_normal(100), name=name)
|
||||
|
||||
factor = cut(ser, 4)
|
||||
assert factor.name == name
|
||||
|
||||
|
||||
def test_label_precision():
|
||||
arr = np.arange(0, 0.73, 0.01)
|
||||
result = cut(arr, 4, precision=2)
|
||||
|
||||
ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72])
|
||||
tm.assert_index_equal(result.categories, ex_levels)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("labels", [None, False])
|
||||
def test_na_handling(labels):
|
||||
arr = np.arange(0, 0.75, 0.01)
|
||||
arr[::3] = np.nan
|
||||
|
||||
result = cut(arr, 4, labels=labels)
|
||||
result = np.asarray(result)
|
||||
|
||||
expected = np.where(isna(arr), np.nan, result)
|
||||
tm.assert_almost_equal(result, expected)
|
||||
|
||||
|
||||
def test_inf_handling():
|
||||
data = np.arange(6)
|
||||
data_ser = Series(data, dtype="int64")
|
||||
|
||||
bins = [-np.inf, 2, 4, np.inf]
|
||||
result = cut(data, bins)
|
||||
result_ser = cut(data_ser, bins)
|
||||
|
||||
ex_uniques = IntervalIndex.from_breaks(bins)
|
||||
tm.assert_index_equal(result.categories, ex_uniques)
|
||||
|
||||
assert result[5] == Interval(4, np.inf)
|
||||
assert result[0] == Interval(-np.inf, 2)
|
||||
assert result_ser[5] == Interval(4, np.inf)
|
||||
assert result_ser[0] == Interval(-np.inf, 2)
|
||||
|
||||
|
||||
def test_cut_out_of_bounds():
|
||||
arr = np.random.default_rng(2).standard_normal(100)
|
||||
result = cut(arr, [-1, 0, 1])
|
||||
|
||||
mask = isna(result)
|
||||
ex_mask = (arr < -1) | (arr > 1)
|
||||
tm.assert_numpy_array_equal(mask, ex_mask)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"get_labels,get_expected",
|
||||
[
|
||||
(
|
||||
lambda labels: labels,
|
||||
lambda labels: Categorical(
|
||||
["Medium"] + 4 * ["Small"] + ["Medium", "Large"],
|
||||
categories=labels,
|
||||
ordered=True,
|
||||
),
|
||||
),
|
||||
(
|
||||
lambda labels: Categorical.from_codes([0, 1, 2], labels),
|
||||
lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_cut_pass_labels(get_labels, get_expected):
|
||||
bins = [0, 25, 50, 100]
|
||||
arr = [50, 5, 10, 15, 20, 30, 70]
|
||||
labels = ["Small", "Medium", "Large"]
|
||||
|
||||
result = cut(arr, bins, labels=get_labels(labels))
|
||||
tm.assert_categorical_equal(result, get_expected(labels))
|
||||
|
||||
|
||||
def test_cut_pass_labels_compat():
|
||||
# see gh-16459
|
||||
arr = [50, 5, 10, 15, 20, 30, 70]
|
||||
labels = ["Good", "Medium", "Bad"]
|
||||
|
||||
result = cut(arr, 3, labels=labels)
|
||||
exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True))
|
||||
tm.assert_categorical_equal(result, exp)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10])
|
||||
def test_round_frac_just_works(x):
|
||||
# It works.
|
||||
cut(x, 2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"val,precision,expected",
|
||||
[
|
||||
(-117.9998, 3, -118),
|
||||
(117.9998, 3, 118),
|
||||
(117.9998, 2, 118),
|
||||
(0.000123456, 2, 0.00012),
|
||||
],
|
||||
)
|
||||
def test_round_frac(val, precision, expected):
|
||||
# see gh-1979
|
||||
result = tmod._round_frac(val, precision=precision)
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_cut_return_intervals():
|
||||
ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
|
||||
result = cut(ser, 3)
|
||||
|
||||
exp_bins = np.linspace(0, 8, num=4).round(3)
|
||||
exp_bins[0] -= 0.008
|
||||
|
||||
expected = Series(
|
||||
IntervalIndex.from_breaks(exp_bins, closed="right").take(
|
||||
[0, 0, 0, 1, 1, 1, 2, 2, 2]
|
||||
)
|
||||
).astype(CDT(ordered=True))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_series_ret_bins():
|
||||
# see gh-8589
|
||||
ser = Series(np.arange(4))
|
||||
result, bins = cut(ser, 2, retbins=True)
|
||||
|
||||
expected = Series(
|
||||
IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2)
|
||||
).astype(CDT(ordered=True))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs,msg",
|
||||
[
|
||||
({"duplicates": "drop"}, None),
|
||||
({}, "Bin edges must be unique"),
|
||||
({"duplicates": "raise"}, "Bin edges must be unique"),
|
||||
({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"),
|
||||
],
|
||||
)
|
||||
def test_cut_duplicates_bin(kwargs, msg):
|
||||
# see gh-20947
|
||||
bins = [0, 2, 4, 6, 10, 10]
|
||||
values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"])
|
||||
|
||||
if msg is not None:
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(values, bins, **kwargs)
|
||||
else:
|
||||
result = cut(values, bins, **kwargs)
|
||||
expected = cut(values, pd.unique(np.asarray(bins)))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("data", [9.0, -9.0, 0.0])
|
||||
@pytest.mark.parametrize("length", [1, 2])
|
||||
def test_single_bin(data, length):
|
||||
# see gh-14652, gh-15428
|
||||
ser = Series([data] * length)
|
||||
result = cut(ser, 1, labels=False)
|
||||
|
||||
expected = Series([0] * length, dtype=np.intp)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)]
|
||||
)
|
||||
def test_cut_read_only(array_1_writeable, array_2_writeable):
|
||||
# issue 18773
|
||||
array_1 = np.arange(0, 100, 10)
|
||||
array_1.flags.writeable = array_1_writeable
|
||||
|
||||
array_2 = np.arange(0, 100, 10)
|
||||
array_2.flags.writeable = array_2_writeable
|
||||
|
||||
hundred_elements = np.arange(100)
|
||||
tm.assert_categorical_equal(
|
||||
cut(hundred_elements, array_1), cut(hundred_elements, array_2)
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"conv",
|
||||
[
|
||||
lambda v: Timestamp(v),
|
||||
lambda v: to_datetime(v),
|
||||
lambda v: np.datetime64(v),
|
||||
lambda v: Timestamp(v).to_pydatetime(),
|
||||
],
|
||||
)
|
||||
def test_datetime_bin(conv):
|
||||
data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")]
|
||||
bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"]
|
||||
|
||||
expected = Series(
|
||||
IntervalIndex(
|
||||
[
|
||||
Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])),
|
||||
Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])),
|
||||
]
|
||||
)
|
||||
).astype(CDT(ordered=True))
|
||||
|
||||
bins = [conv(v) for v in bin_data]
|
||||
result = Series(cut(data, bins=bins))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data",
|
||||
[
|
||||
to_datetime(Series(["2013-01-01", "2013-01-02", "2013-01-03"])),
|
||||
[
|
||||
np.datetime64("2013-01-01"),
|
||||
np.datetime64("2013-01-02"),
|
||||
np.datetime64("2013-01-03"),
|
||||
],
|
||||
np.array(
|
||||
[
|
||||
np.datetime64("2013-01-01"),
|
||||
np.datetime64("2013-01-02"),
|
||||
np.datetime64("2013-01-03"),
|
||||
]
|
||||
),
|
||||
DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03"]),
|
||||
],
|
||||
)
|
||||
def test_datetime_cut(data):
|
||||
# see gh-14714
|
||||
#
|
||||
# Testing time data when it comes in various collection types.
|
||||
result, _ = cut(data, 3, retbins=True)
|
||||
expected = Series(
|
||||
IntervalIndex(
|
||||
[
|
||||
Interval(
|
||||
Timestamp("2012-12-31 23:57:07.200000"),
|
||||
Timestamp("2013-01-01 16:00:00"),
|
||||
),
|
||||
Interval(
|
||||
Timestamp("2013-01-01 16:00:00"), Timestamp("2013-01-02 08:00:00")
|
||||
),
|
||||
Interval(
|
||||
Timestamp("2013-01-02 08:00:00"), Timestamp("2013-01-03 00:00:00")
|
||||
),
|
||||
]
|
||||
)
|
||||
).astype(CDT(ordered=True))
|
||||
tm.assert_series_equal(Series(result), expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"bins",
|
||||
[
|
||||
3,
|
||||
[
|
||||
Timestamp("2013-01-01 04:57:07.200000"),
|
||||
Timestamp("2013-01-01 21:00:00"),
|
||||
Timestamp("2013-01-02 13:00:00"),
|
||||
Timestamp("2013-01-03 05:00:00"),
|
||||
],
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
|
||||
def test_datetime_tz_cut(bins, box):
|
||||
# see gh-19872
|
||||
tz = "US/Eastern"
|
||||
s = Series(date_range("20130101", periods=3, tz=tz))
|
||||
|
||||
if not isinstance(bins, int):
|
||||
bins = box(bins)
|
||||
|
||||
result = cut(s, bins)
|
||||
expected = Series(
|
||||
IntervalIndex(
|
||||
[
|
||||
Interval(
|
||||
Timestamp("2012-12-31 23:57:07.200000", tz=tz),
|
||||
Timestamp("2013-01-01 16:00:00", tz=tz),
|
||||
),
|
||||
Interval(
|
||||
Timestamp("2013-01-01 16:00:00", tz=tz),
|
||||
Timestamp("2013-01-02 08:00:00", tz=tz),
|
||||
),
|
||||
Interval(
|
||||
Timestamp("2013-01-02 08:00:00", tz=tz),
|
||||
Timestamp("2013-01-03 00:00:00", tz=tz),
|
||||
),
|
||||
]
|
||||
)
|
||||
).astype(CDT(ordered=True))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_datetime_nan_error():
|
||||
msg = "bins must be of datetime64 dtype"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(date_range("20130101", periods=3), bins=[0, 2, 4])
|
||||
|
||||
|
||||
def test_datetime_nan_mask():
|
||||
result = cut(
|
||||
date_range("20130102", periods=5), bins=date_range("20130101", periods=2)
|
||||
)
|
||||
|
||||
mask = result.categories.isna()
|
||||
tm.assert_numpy_array_equal(mask, np.array([False]))
|
||||
|
||||
mask = result.isna()
|
||||
tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"])
|
||||
def test_datetime_cut_roundtrip(tz):
|
||||
# see gh-19891
|
||||
ser = Series(date_range("20180101", periods=3, tz=tz))
|
||||
result, result_bins = cut(ser, 2, retbins=True)
|
||||
|
||||
expected = cut(ser, result_bins)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
expected_bins = DatetimeIndex(
|
||||
["2017-12-31 23:57:07.200000", "2018-01-02 00:00:00", "2018-01-03 00:00:00"]
|
||||
)
|
||||
expected_bins = expected_bins.tz_localize(tz)
|
||||
tm.assert_index_equal(result_bins, expected_bins)
|
||||
|
||||
|
||||
def test_timedelta_cut_roundtrip():
|
||||
# see gh-19891
|
||||
ser = Series(timedelta_range("1day", periods=3))
|
||||
result, result_bins = cut(ser, 2, retbins=True)
|
||||
|
||||
expected = cut(ser, result_bins)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
expected_bins = TimedeltaIndex(
|
||||
["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"]
|
||||
)
|
||||
tm.assert_index_equal(result_bins, expected_bins)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bins", [6, 7])
|
||||
@pytest.mark.parametrize(
|
||||
"box, compare",
|
||||
[
|
||||
(Series, tm.assert_series_equal),
|
||||
(np.array, tm.assert_categorical_equal),
|
||||
(list, tm.assert_equal),
|
||||
],
|
||||
)
|
||||
def test_cut_bool_coercion_to_int(bins, box, compare):
|
||||
# issue 20303
|
||||
data_expected = box([0, 1, 1, 0, 1] * 10)
|
||||
data_result = box([False, True, True, False, True] * 10)
|
||||
expected = cut(data_expected, bins, duplicates="drop")
|
||||
result = cut(data_result, bins, duplicates="drop")
|
||||
compare(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("labels", ["foo", 1, True])
|
||||
def test_cut_incorrect_labels(labels):
|
||||
# GH 13318
|
||||
values = range(5)
|
||||
msg = "Bin labels must either be False, None or passed in as a list-like argument"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut(values, 4, labels=labels)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bins", [3, [0, 5, 15]])
|
||||
@pytest.mark.parametrize("right", [True, False])
|
||||
@pytest.mark.parametrize("include_lowest", [True, False])
|
||||
def test_cut_nullable_integer(bins, right, include_lowest):
|
||||
a = np.random.default_rng(2).integers(0, 10, size=50).astype(float)
|
||||
a[::2] = np.nan
|
||||
result = cut(
|
||||
pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest
|
||||
)
|
||||
expected = cut(a, bins, right=right, include_lowest=include_lowest)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, bins, labels, expected_codes, expected_labels",
|
||||
[
|
||||
([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]),
|
||||
([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]),
|
||||
],
|
||||
)
|
||||
def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels):
|
||||
# GH 33141
|
||||
result = cut(data, bins=bins, labels=labels, ordered=False)
|
||||
expected = Categorical.from_codes(
|
||||
expected_codes, categories=expected_labels, ordered=False
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, bins, labels, expected_codes, expected_labels",
|
||||
[
|
||||
([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]),
|
||||
([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]),
|
||||
],
|
||||
)
|
||||
def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels):
|
||||
# GH 33141
|
||||
result = cut(data, bins=bins, labels=labels, ordered=False)
|
||||
expected = Categorical.from_codes(
|
||||
expected_codes, categories=expected_labels, ordered=False
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
def test_cut_unordered_with_missing_labels_raises_error():
|
||||
# GH 33141
|
||||
msg = "'labels' must be provided if 'ordered = False'"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cut([0.5, 3], bins=[0, 1, 2], ordered=False)
|
||||
|
||||
|
||||
def test_cut_unordered_with_series_labels():
|
||||
# https://github.com/pandas-dev/pandas/issues/36603
|
||||
s = Series([1, 2, 3, 4, 5])
|
||||
bins = Series([0, 2, 4, 6])
|
||||
labels = Series(["a", "b", "c"])
|
||||
result = cut(s, bins=bins, labels=labels, ordered=False)
|
||||
expected = Series(["a", "a", "b", "b", "c"], dtype="category")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_cut_no_warnings():
|
||||
df = DataFrame({"value": np.random.default_rng(2).integers(0, 100, 20)})
|
||||
labels = [f"{i} - {i + 9}" for i in range(0, 100, 10)]
|
||||
with tm.assert_produces_warning(False):
|
||||
df["group"] = cut(df.value, range(0, 105, 10), right=False, labels=labels)
|
||||
|
||||
|
||||
def test_cut_with_duplicated_index_lowest_included():
|
||||
# GH 42185
|
||||
expected = Series(
|
||||
[Interval(-0.001, 2, closed="right")] * 3
|
||||
+ [Interval(2, 4, closed="right"), Interval(-0.001, 2, closed="right")],
|
||||
index=[0, 1, 2, 3, 0],
|
||||
dtype="category",
|
||||
).cat.as_ordered()
|
||||
|
||||
s = Series([0, 1, 2, 3, 0], index=[0, 1, 2, 3, 0])
|
||||
result = cut(s, bins=[0, 2, 4], include_lowest=True)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_cut_with_nonexact_categorical_indices():
|
||||
# GH 42424
|
||||
|
||||
ser = Series(range(0, 100))
|
||||
ser1 = cut(ser, 10).value_counts().head(5)
|
||||
ser2 = cut(ser, 10).value_counts().tail(5)
|
||||
result = DataFrame({"1": ser1, "2": ser2})
|
||||
|
||||
index = pd.CategoricalIndex(
|
||||
[
|
||||
Interval(-0.099, 9.9, closed="right"),
|
||||
Interval(9.9, 19.8, closed="right"),
|
||||
Interval(19.8, 29.7, closed="right"),
|
||||
Interval(29.7, 39.6, closed="right"),
|
||||
Interval(39.6, 49.5, closed="right"),
|
||||
Interval(49.5, 59.4, closed="right"),
|
||||
Interval(59.4, 69.3, closed="right"),
|
||||
Interval(69.3, 79.2, closed="right"),
|
||||
Interval(79.2, 89.1, closed="right"),
|
||||
Interval(89.1, 99, closed="right"),
|
||||
],
|
||||
ordered=True,
|
||||
)
|
||||
|
||||
expected = DataFrame(
|
||||
{"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(expected, result)
|
||||
|
||||
|
||||
def test_cut_with_timestamp_tuple_labels():
|
||||
# GH 40661
|
||||
labels = [(Timestamp(10),), (Timestamp(20),), (Timestamp(30),)]
|
||||
result = cut([2, 4, 6], bins=[1, 3, 5, 7], labels=labels)
|
||||
|
||||
expected = Categorical.from_codes([0, 1, 2], labels, ordered=True)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
def test_cut_bins_datetime_intervalindex():
|
||||
# https://github.com/pandas-dev/pandas/issues/46218
|
||||
bins = interval_range(Timestamp("2022-02-25"), Timestamp("2022-02-27"), freq="1D")
|
||||
# passing Series instead of list is important to trigger bug
|
||||
result = cut(Series([Timestamp("2022-02-26")]), bins=bins)
|
||||
expected = Categorical.from_codes([0], bins, ordered=True)
|
||||
tm.assert_categorical_equal(result.array, expected)
|
||||
|
||||
|
||||
def test_cut_with_nullable_int64():
|
||||
# GH 30787
|
||||
series = Series([0, 1, 2, 3, 4, pd.NA, 6, 7], dtype="Int64")
|
||||
bins = [0, 2, 4, 6, 8]
|
||||
intervals = IntervalIndex.from_breaks(bins)
|
||||
|
||||
expected = Series(
|
||||
Categorical.from_codes([-1, 0, 0, 1, 1, -1, 2, 3], intervals, ordered=True)
|
||||
)
|
||||
|
||||
result = cut(series, bins=bins)
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
|
@ -0,0 +1,443 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
from_dummies,
|
||||
get_dummies,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dummies_basic():
|
||||
return DataFrame(
|
||||
{
|
||||
"col1_a": [1, 0, 1],
|
||||
"col1_b": [0, 1, 0],
|
||||
"col2_a": [0, 1, 0],
|
||||
"col2_b": [1, 0, 0],
|
||||
"col2_c": [0, 0, 1],
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dummies_with_unassigned():
|
||||
return DataFrame(
|
||||
{
|
||||
"col1_a": [1, 0, 0],
|
||||
"col1_b": [0, 1, 0],
|
||||
"col2_a": [0, 1, 0],
|
||||
"col2_b": [0, 0, 0],
|
||||
"col2_c": [0, 0, 1],
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def test_error_wrong_data_type():
|
||||
dummies = [0, 1, 0]
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match=r"Expected 'data' to be a 'DataFrame'; Received 'data' of type: list",
|
||||
):
|
||||
from_dummies(dummies)
|
||||
|
||||
|
||||
def test_error_no_prefix_contains_unassigned():
|
||||
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]})
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match=(
|
||||
r"Dummy DataFrame contains unassigned value\(s\); "
|
||||
r"First instance in row: 2"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies)
|
||||
|
||||
|
||||
def test_error_no_prefix_wrong_default_category_type():
|
||||
dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]})
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match=(
|
||||
r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; "
|
||||
r"Received 'default_category' of type: list"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies, default_category=["c", "d"])
|
||||
|
||||
|
||||
def test_error_no_prefix_multi_assignment():
|
||||
dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]})
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match=(
|
||||
r"Dummy DataFrame contains multi-assignment\(s\); "
|
||||
r"First instance in row: 2"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies)
|
||||
|
||||
|
||||
def test_error_no_prefix_contains_nan():
|
||||
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, np.nan]})
|
||||
with pytest.raises(
|
||||
ValueError, match=r"Dummy DataFrame contains NA value in column: 'b'"
|
||||
):
|
||||
from_dummies(dummies)
|
||||
|
||||
|
||||
def test_error_contains_non_dummies():
|
||||
dummies = DataFrame(
|
||||
{"a": [1, 6, 3, 1], "b": [0, 1, 0, 2], "c": ["c1", "c2", "c3", "c4"]}
|
||||
)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match=r"Passed DataFrame contains non-dummy data",
|
||||
):
|
||||
from_dummies(dummies)
|
||||
|
||||
|
||||
def test_error_with_prefix_multiple_seperators():
|
||||
dummies = DataFrame(
|
||||
{
|
||||
"col1_a": [1, 0, 1],
|
||||
"col1_b": [0, 1, 0],
|
||||
"col2-a": [0, 1, 0],
|
||||
"col2-b": [1, 0, 1],
|
||||
},
|
||||
)
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match=(r"Separator not specified for column: col2-a"),
|
||||
):
|
||||
from_dummies(dummies, sep="_")
|
||||
|
||||
|
||||
def test_error_with_prefix_sep_wrong_type(dummies_basic):
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match=(
|
||||
r"Expected 'sep' to be of type 'str' or 'None'; "
|
||||
r"Received 'sep' of type: list"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies_basic, sep=["_"])
|
||||
|
||||
|
||||
def test_error_with_prefix_contains_unassigned(dummies_with_unassigned):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match=(
|
||||
r"Dummy DataFrame contains unassigned value\(s\); "
|
||||
r"First instance in row: 2"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies_with_unassigned, sep="_")
|
||||
|
||||
|
||||
def test_error_with_prefix_default_category_wrong_type(dummies_with_unassigned):
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match=(
|
||||
r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; "
|
||||
r"Received 'default_category' of type: list"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies_with_unassigned, sep="_", default_category=["x", "y"])
|
||||
|
||||
|
||||
def test_error_with_prefix_default_category_dict_not_complete(
|
||||
dummies_with_unassigned,
|
||||
):
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match=(
|
||||
r"Length of 'default_category' \(1\) did not match "
|
||||
r"the length of the columns being encoded \(2\)"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies_with_unassigned, sep="_", default_category={"col1": "x"})
|
||||
|
||||
|
||||
def test_error_with_prefix_contains_nan(dummies_basic):
|
||||
# Set float64 dtype to avoid upcast when setting np.nan
|
||||
dummies_basic["col2_c"] = dummies_basic["col2_c"].astype("float64")
|
||||
dummies_basic.loc[2, "col2_c"] = np.nan
|
||||
with pytest.raises(
|
||||
ValueError, match=r"Dummy DataFrame contains NA value in column: 'col2_c'"
|
||||
):
|
||||
from_dummies(dummies_basic, sep="_")
|
||||
|
||||
|
||||
def test_error_with_prefix_contains_non_dummies(dummies_basic):
|
||||
# Set object dtype to avoid upcast when setting "str"
|
||||
dummies_basic["col2_c"] = dummies_basic["col2_c"].astype(object)
|
||||
dummies_basic.loc[2, "col2_c"] = "str"
|
||||
with pytest.raises(TypeError, match=r"Passed DataFrame contains non-dummy data"):
|
||||
from_dummies(dummies_basic, sep="_")
|
||||
|
||||
|
||||
def test_error_with_prefix_double_assignment():
|
||||
dummies = DataFrame(
|
||||
{
|
||||
"col1_a": [1, 0, 1],
|
||||
"col1_b": [1, 1, 0],
|
||||
"col2_a": [0, 1, 0],
|
||||
"col2_b": [1, 0, 0],
|
||||
"col2_c": [0, 0, 1],
|
||||
},
|
||||
)
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match=(
|
||||
r"Dummy DataFrame contains multi-assignment\(s\); "
|
||||
r"First instance in row: 0"
|
||||
),
|
||||
):
|
||||
from_dummies(dummies, sep="_")
|
||||
|
||||
|
||||
def test_roundtrip_series_to_dataframe():
|
||||
categories = Series(["a", "b", "c", "a"])
|
||||
dummies = get_dummies(categories)
|
||||
result = from_dummies(dummies)
|
||||
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_roundtrip_single_column_dataframe():
|
||||
categories = DataFrame({"": ["a", "b", "c", "a"]})
|
||||
dummies = get_dummies(categories)
|
||||
result = from_dummies(dummies, sep="_")
|
||||
expected = categories
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_roundtrip_with_prefixes():
|
||||
categories = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]})
|
||||
dummies = get_dummies(categories)
|
||||
result = from_dummies(dummies, sep="_")
|
||||
expected = categories
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_string_cats_basic():
|
||||
dummies = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]})
|
||||
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_string_cats_basic_bool_values():
|
||||
dummies = DataFrame(
|
||||
{
|
||||
"a": [True, False, False, True],
|
||||
"b": [False, True, False, False],
|
||||
"c": [False, False, True, False],
|
||||
}
|
||||
)
|
||||
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_string_cats_basic_mixed_bool_values():
|
||||
dummies = DataFrame(
|
||||
{"a": [1, 0, 0, 1], "b": [False, True, False, False], "c": [0, 0, 1, 0]}
|
||||
)
|
||||
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_int_cats_basic():
|
||||
dummies = DataFrame(
|
||||
{1: [1, 0, 0, 0], 25: [0, 1, 0, 0], 2: [0, 0, 1, 0], 5: [0, 0, 0, 1]}
|
||||
)
|
||||
expected = DataFrame({"": [1, 25, 2, 5]})
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_float_cats_basic():
|
||||
dummies = DataFrame(
|
||||
{1.0: [1, 0, 0, 0], 25.0: [0, 1, 0, 0], 2.5: [0, 0, 1, 0], 5.84: [0, 0, 0, 1]}
|
||||
)
|
||||
expected = DataFrame({"": [1.0, 25.0, 2.5, 5.84]})
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_mixed_cats_basic():
|
||||
dummies = DataFrame(
|
||||
{
|
||||
1.23: [1, 0, 0, 0, 0],
|
||||
"c": [0, 1, 0, 0, 0],
|
||||
2: [0, 0, 1, 0, 0],
|
||||
False: [0, 0, 0, 1, 0],
|
||||
None: [0, 0, 0, 0, 1],
|
||||
}
|
||||
)
|
||||
expected = DataFrame({"": [1.23, "c", 2, False, None]}, dtype="object")
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_no_prefix_string_cats_contains_get_dummies_NaN_column():
|
||||
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0], "NaN": [0, 0, 1]})
|
||||
expected = DataFrame({"": ["a", "b", "NaN"]})
|
||||
result = from_dummies(dummies)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"default_category, expected",
|
||||
[
|
||||
pytest.param(
|
||||
"c",
|
||||
DataFrame({"": ["a", "b", "c"]}),
|
||||
id="default_category is a str",
|
||||
),
|
||||
pytest.param(
|
||||
1,
|
||||
DataFrame({"": ["a", "b", 1]}),
|
||||
id="default_category is a int",
|
||||
),
|
||||
pytest.param(
|
||||
1.25,
|
||||
DataFrame({"": ["a", "b", 1.25]}),
|
||||
id="default_category is a float",
|
||||
),
|
||||
pytest.param(
|
||||
0,
|
||||
DataFrame({"": ["a", "b", 0]}),
|
||||
id="default_category is a 0",
|
||||
),
|
||||
pytest.param(
|
||||
False,
|
||||
DataFrame({"": ["a", "b", False]}),
|
||||
id="default_category is a bool",
|
||||
),
|
||||
pytest.param(
|
||||
(1, 2),
|
||||
DataFrame({"": ["a", "b", (1, 2)]}),
|
||||
id="default_category is a tuple",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_no_prefix_string_cats_default_category(default_category, expected):
|
||||
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]})
|
||||
result = from_dummies(dummies, default_category=default_category)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_with_prefix_basic(dummies_basic):
|
||||
expected = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]})
|
||||
result = from_dummies(dummies_basic, sep="_")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_with_prefix_contains_get_dummies_NaN_column():
|
||||
dummies = DataFrame(
|
||||
{
|
||||
"col1_a": [1, 0, 0],
|
||||
"col1_b": [0, 1, 0],
|
||||
"col1_NaN": [0, 0, 1],
|
||||
"col2_a": [0, 1, 0],
|
||||
"col2_b": [0, 0, 0],
|
||||
"col2_c": [0, 0, 1],
|
||||
"col2_NaN": [1, 0, 0],
|
||||
},
|
||||
)
|
||||
expected = DataFrame({"col1": ["a", "b", "NaN"], "col2": ["NaN", "a", "c"]})
|
||||
result = from_dummies(dummies, sep="_")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"default_category, expected",
|
||||
[
|
||||
pytest.param(
|
||||
"x",
|
||||
DataFrame({"col1": ["a", "b", "x"], "col2": ["x", "a", "c"]}),
|
||||
id="default_category is a str",
|
||||
),
|
||||
pytest.param(
|
||||
0,
|
||||
DataFrame({"col1": ["a", "b", 0], "col2": [0, "a", "c"]}),
|
||||
id="default_category is a 0",
|
||||
),
|
||||
pytest.param(
|
||||
False,
|
||||
DataFrame({"col1": ["a", "b", False], "col2": [False, "a", "c"]}),
|
||||
id="default_category is a False",
|
||||
),
|
||||
pytest.param(
|
||||
{"col2": 1, "col1": 2.5},
|
||||
DataFrame({"col1": ["a", "b", 2.5], "col2": [1, "a", "c"]}),
|
||||
id="default_category is a dict with int and float values",
|
||||
),
|
||||
pytest.param(
|
||||
{"col2": None, "col1": False},
|
||||
DataFrame({"col1": ["a", "b", False], "col2": [None, "a", "c"]}),
|
||||
id="default_category is a dict with bool and None values",
|
||||
),
|
||||
pytest.param(
|
||||
{"col2": (1, 2), "col1": [1.25, False]},
|
||||
DataFrame({"col1": ["a", "b", [1.25, False]], "col2": [(1, 2), "a", "c"]}),
|
||||
id="default_category is a dict with list and tuple values",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_with_prefix_default_category(
|
||||
dummies_with_unassigned, default_category, expected
|
||||
):
|
||||
result = from_dummies(
|
||||
dummies_with_unassigned, sep="_", default_category=default_category
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_ea_categories():
|
||||
# GH 54300
|
||||
df = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]})
|
||||
df.columns = df.columns.astype("string[python]")
|
||||
result = from_dummies(df)
|
||||
expected = DataFrame({"": Series(list("abca"), dtype="string[python]")})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_ea_categories_with_sep():
|
||||
# GH 54300
|
||||
df = DataFrame(
|
||||
{
|
||||
"col1_a": [1, 0, 1],
|
||||
"col1_b": [0, 1, 0],
|
||||
"col2_a": [0, 1, 0],
|
||||
"col2_b": [1, 0, 0],
|
||||
"col2_c": [0, 0, 1],
|
||||
}
|
||||
)
|
||||
df.columns = df.columns.astype("string[python]")
|
||||
result = from_dummies(df, sep="_")
|
||||
expected = DataFrame(
|
||||
{
|
||||
"col1": Series(list("aba"), dtype="string[python]"),
|
||||
"col2": Series(list("bac"), dtype="string[python]"),
|
||||
}
|
||||
)
|
||||
expected.columns = expected.columns.astype("string[python]")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_maintain_original_index():
|
||||
# GH 54300
|
||||
df = DataFrame(
|
||||
{"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]}, index=list("abcd")
|
||||
)
|
||||
result = from_dummies(df)
|
||||
expected = DataFrame({"": list("abca")}, index=list("abcd"))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,695 @@
|
|||
import re
|
||||
import unicodedata
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.common import is_integer_dtype
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
DataFrame,
|
||||
RangeIndex,
|
||||
Series,
|
||||
SparseDtype,
|
||||
get_dummies,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.sparse import SparseArray
|
||||
|
||||
|
||||
class TestGetDummies:
|
||||
@pytest.fixture
|
||||
def df(self):
|
||||
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
|
||||
|
||||
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
|
||||
def dtype(self, request):
|
||||
return np.dtype(request.param)
|
||||
|
||||
@pytest.fixture(params=["dense", "sparse"])
|
||||
def sparse(self, request):
|
||||
# params are strings to simplify reading test results,
|
||||
# e.g. TestGetDummies::test_basic[uint8-sparse] instead of [uint8-True]
|
||||
return request.param == "sparse"
|
||||
|
||||
def effective_dtype(self, dtype):
|
||||
if dtype is None:
|
||||
return np.uint8
|
||||
return dtype
|
||||
|
||||
def test_get_dummies_raises_on_dtype_object(self, df):
|
||||
msg = "dtype=object is not a valid dtype for get_dummies"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
get_dummies(df, dtype="object")
|
||||
|
||||
def test_get_dummies_basic(self, sparse, dtype):
|
||||
s_list = list("abc")
|
||||
s_series = Series(s_list)
|
||||
s_series_index = Series(s_list, list("ABC"))
|
||||
|
||||
expected = DataFrame(
|
||||
{"a": [1, 0, 0], "b": [0, 1, 0], "c": [0, 0, 1]},
|
||||
dtype=self.effective_dtype(dtype),
|
||||
)
|
||||
if sparse:
|
||||
if dtype.kind == "b":
|
||||
expected = expected.apply(SparseArray, fill_value=False)
|
||||
else:
|
||||
expected = expected.apply(SparseArray, fill_value=0.0)
|
||||
result = get_dummies(s_list, sparse=sparse, dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(s_series, sparse=sparse, dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected.index = list("ABC")
|
||||
result = get_dummies(s_series_index, sparse=sparse, dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_basic_types(self, sparse, dtype):
|
||||
# GH 10531
|
||||
s_list = list("abc")
|
||||
s_series = Series(s_list)
|
||||
s_df = DataFrame(
|
||||
{"a": [0, 1, 0, 1, 2], "b": ["A", "A", "B", "C", "C"], "c": [2, 3, 3, 3, 2]}
|
||||
)
|
||||
|
||||
expected = DataFrame(
|
||||
{"a": [1, 0, 0], "b": [0, 1, 0], "c": [0, 0, 1]},
|
||||
dtype=self.effective_dtype(dtype),
|
||||
columns=list("abc"),
|
||||
)
|
||||
if sparse:
|
||||
if is_integer_dtype(dtype):
|
||||
fill_value = 0
|
||||
elif dtype == bool:
|
||||
fill_value = False
|
||||
else:
|
||||
fill_value = 0.0
|
||||
|
||||
expected = expected.apply(SparseArray, fill_value=fill_value)
|
||||
result = get_dummies(s_list, sparse=sparse, dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(s_series, sparse=sparse, dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(s_df, columns=s_df.columns, sparse=sparse, dtype=dtype)
|
||||
if sparse:
|
||||
dtype_name = f"Sparse[{self.effective_dtype(dtype).name}, {fill_value}]"
|
||||
else:
|
||||
dtype_name = self.effective_dtype(dtype).name
|
||||
|
||||
expected = Series({dtype_name: 8}, name="count")
|
||||
result = result.dtypes.value_counts()
|
||||
result.index = [str(i) for i in result.index]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = get_dummies(s_df, columns=["a"], sparse=sparse, dtype=dtype)
|
||||
|
||||
expected_counts = {"int64": 1, "object": 1}
|
||||
expected_counts[dtype_name] = 3 + expected_counts.get(dtype_name, 0)
|
||||
|
||||
expected = Series(expected_counts, name="count").sort_index()
|
||||
result = result.dtypes.value_counts()
|
||||
result.index = [str(i) for i in result.index]
|
||||
result = result.sort_index()
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_get_dummies_just_na(self, sparse):
|
||||
just_na_list = [np.nan]
|
||||
just_na_series = Series(just_na_list)
|
||||
just_na_series_index = Series(just_na_list, index=["A"])
|
||||
|
||||
res_list = get_dummies(just_na_list, sparse=sparse)
|
||||
res_series = get_dummies(just_na_series, sparse=sparse)
|
||||
res_series_index = get_dummies(just_na_series_index, sparse=sparse)
|
||||
|
||||
assert res_list.empty
|
||||
assert res_series.empty
|
||||
assert res_series_index.empty
|
||||
|
||||
assert res_list.index.tolist() == [0]
|
||||
assert res_series.index.tolist() == [0]
|
||||
assert res_series_index.index.tolist() == ["A"]
|
||||
|
||||
def test_get_dummies_include_na(self, sparse, dtype):
|
||||
s = ["a", "b", np.nan]
|
||||
res = get_dummies(s, sparse=sparse, dtype=dtype)
|
||||
exp = DataFrame(
|
||||
{"a": [1, 0, 0], "b": [0, 1, 0]}, dtype=self.effective_dtype(dtype)
|
||||
)
|
||||
if sparse:
|
||||
if dtype.kind == "b":
|
||||
exp = exp.apply(SparseArray, fill_value=False)
|
||||
else:
|
||||
exp = exp.apply(SparseArray, fill_value=0.0)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
# Sparse dataframes do not allow nan labelled columns, see #GH8822
|
||||
res_na = get_dummies(s, dummy_na=True, sparse=sparse, dtype=dtype)
|
||||
exp_na = DataFrame(
|
||||
{np.nan: [0, 0, 1], "a": [1, 0, 0], "b": [0, 1, 0]},
|
||||
dtype=self.effective_dtype(dtype),
|
||||
)
|
||||
exp_na = exp_na.reindex(["a", "b", np.nan], axis=1)
|
||||
# hack (NaN handling in assert_index_equal)
|
||||
exp_na.columns = res_na.columns
|
||||
if sparse:
|
||||
if dtype.kind == "b":
|
||||
exp_na = exp_na.apply(SparseArray, fill_value=False)
|
||||
else:
|
||||
exp_na = exp_na.apply(SparseArray, fill_value=0.0)
|
||||
tm.assert_frame_equal(res_na, exp_na)
|
||||
|
||||
res_just_na = get_dummies([np.nan], dummy_na=True, sparse=sparse, dtype=dtype)
|
||||
exp_just_na = DataFrame(
|
||||
Series(1, index=[0]), columns=[np.nan], dtype=self.effective_dtype(dtype)
|
||||
)
|
||||
tm.assert_numpy_array_equal(res_just_na.values, exp_just_na.values)
|
||||
|
||||
def test_get_dummies_unicode(self, sparse):
|
||||
# See GH 6885 - get_dummies chokes on unicode values
|
||||
e = "e"
|
||||
eacute = unicodedata.lookup("LATIN SMALL LETTER E WITH ACUTE")
|
||||
s = [e, eacute, eacute]
|
||||
res = get_dummies(s, prefix="letter", sparse=sparse)
|
||||
exp = DataFrame(
|
||||
{"letter_e": [True, False, False], f"letter_{eacute}": [False, True, True]}
|
||||
)
|
||||
if sparse:
|
||||
exp = exp.apply(SparseArray, fill_value=False)
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
def test_dataframe_dummies_all_obj(self, df, sparse):
|
||||
df = df[["A", "B"]]
|
||||
result = get_dummies(df, sparse=sparse)
|
||||
expected = DataFrame(
|
||||
{"A_a": [1, 0, 1], "A_b": [0, 1, 0], "B_b": [1, 1, 0], "B_c": [0, 0, 1]},
|
||||
dtype=bool,
|
||||
)
|
||||
if sparse:
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A_a": SparseArray([1, 0, 1], dtype="bool"),
|
||||
"A_b": SparseArray([0, 1, 0], dtype="bool"),
|
||||
"B_b": SparseArray([1, 1, 0], dtype="bool"),
|
||||
"B_c": SparseArray([0, 0, 1], dtype="bool"),
|
||||
}
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_string_dtype(self, df):
|
||||
# GH44965
|
||||
df = df[["A", "B"]]
|
||||
df = df.astype({"A": "object", "B": "string"})
|
||||
result = get_dummies(df)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A_a": [1, 0, 1],
|
||||
"A_b": [0, 1, 0],
|
||||
"B_b": [1, 1, 0],
|
||||
"B_c": [0, 0, 1],
|
||||
},
|
||||
dtype=bool,
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_mix_default(self, df, sparse, dtype):
|
||||
result = get_dummies(df, sparse=sparse, dtype=dtype)
|
||||
if sparse:
|
||||
arr = SparseArray
|
||||
if dtype.kind == "b":
|
||||
typ = SparseDtype(dtype, False)
|
||||
else:
|
||||
typ = SparseDtype(dtype, 0)
|
||||
else:
|
||||
arr = np.array
|
||||
typ = dtype
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3],
|
||||
"A_a": arr([1, 0, 1], dtype=typ),
|
||||
"A_b": arr([0, 1, 0], dtype=typ),
|
||||
"B_b": arr([1, 1, 0], dtype=typ),
|
||||
"B_c": arr([0, 0, 1], dtype=typ),
|
||||
}
|
||||
)
|
||||
expected = expected[["C", "A_a", "A_b", "B_b", "B_c"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_prefix_list(self, df, sparse):
|
||||
prefixes = ["from_A", "from_B"]
|
||||
result = get_dummies(df, prefix=prefixes, sparse=sparse)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3],
|
||||
"from_A_a": [True, False, True],
|
||||
"from_A_b": [False, True, False],
|
||||
"from_B_b": [True, True, False],
|
||||
"from_B_c": [False, False, True],
|
||||
},
|
||||
)
|
||||
expected[["C"]] = df[["C"]]
|
||||
cols = ["from_A_a", "from_A_b", "from_B_b", "from_B_c"]
|
||||
expected = expected[["C"] + cols]
|
||||
|
||||
typ = SparseArray if sparse else Series
|
||||
expected[cols] = expected[cols].apply(lambda x: typ(x))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_prefix_str(self, df, sparse):
|
||||
# not that you should do this...
|
||||
result = get_dummies(df, prefix="bad", sparse=sparse)
|
||||
bad_columns = ["bad_a", "bad_b", "bad_b", "bad_c"]
|
||||
expected = DataFrame(
|
||||
[
|
||||
[1, True, False, True, False],
|
||||
[2, False, True, True, False],
|
||||
[3, True, False, False, True],
|
||||
],
|
||||
columns=["C"] + bad_columns,
|
||||
)
|
||||
expected = expected.astype({"C": np.int64})
|
||||
if sparse:
|
||||
# work around astyping & assigning with duplicate columns
|
||||
# https://github.com/pandas-dev/pandas/issues/14427
|
||||
expected = pd.concat(
|
||||
[
|
||||
Series([1, 2, 3], name="C"),
|
||||
Series([True, False, True], name="bad_a", dtype="Sparse[bool]"),
|
||||
Series([False, True, False], name="bad_b", dtype="Sparse[bool]"),
|
||||
Series([True, True, False], name="bad_b", dtype="Sparse[bool]"),
|
||||
Series([False, False, True], name="bad_c", dtype="Sparse[bool]"),
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_subset(self, df, sparse):
|
||||
result = get_dummies(df, prefix=["from_A"], columns=["A"], sparse=sparse)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"B": ["b", "b", "c"],
|
||||
"C": [1, 2, 3],
|
||||
"from_A_a": [1, 0, 1],
|
||||
"from_A_b": [0, 1, 0],
|
||||
},
|
||||
)
|
||||
cols = expected.columns
|
||||
expected[cols[1:]] = expected[cols[1:]].astype(bool)
|
||||
expected[["C"]] = df[["C"]]
|
||||
if sparse:
|
||||
cols = ["from_A_a", "from_A_b"]
|
||||
expected[cols] = expected[cols].astype(SparseDtype("bool", False))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_prefix_sep(self, df, sparse):
|
||||
result = get_dummies(df, prefix_sep="..", sparse=sparse)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3],
|
||||
"A..a": [True, False, True],
|
||||
"A..b": [False, True, False],
|
||||
"B..b": [True, True, False],
|
||||
"B..c": [False, False, True],
|
||||
},
|
||||
)
|
||||
expected[["C"]] = df[["C"]]
|
||||
expected = expected[["C", "A..a", "A..b", "B..b", "B..c"]]
|
||||
if sparse:
|
||||
cols = ["A..a", "A..b", "B..b", "B..c"]
|
||||
expected[cols] = expected[cols].astype(SparseDtype("bool", False))
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(df, prefix_sep=["..", "__"], sparse=sparse)
|
||||
expected = expected.rename(columns={"B..b": "B__b", "B..c": "B__c"})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(df, prefix_sep={"A": "..", "B": "__"}, sparse=sparse)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_prefix_bad_length(self, df, sparse):
|
||||
msg = re.escape(
|
||||
"Length of 'prefix' (1) did not match the length of the columns being "
|
||||
"encoded (2)"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
get_dummies(df, prefix=["too few"], sparse=sparse)
|
||||
|
||||
def test_dataframe_dummies_prefix_sep_bad_length(self, df, sparse):
|
||||
msg = re.escape(
|
||||
"Length of 'prefix_sep' (1) did not match the length of the columns being "
|
||||
"encoded (2)"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
get_dummies(df, prefix_sep=["bad"], sparse=sparse)
|
||||
|
||||
def test_dataframe_dummies_prefix_dict(self, sparse):
|
||||
prefixes = {"A": "from_A", "B": "from_B"}
|
||||
df = DataFrame({"C": [1, 2, 3], "A": ["a", "b", "a"], "B": ["b", "b", "c"]})
|
||||
result = get_dummies(df, prefix=prefixes, sparse=sparse)
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3],
|
||||
"from_A_a": [1, 0, 1],
|
||||
"from_A_b": [0, 1, 0],
|
||||
"from_B_b": [1, 1, 0],
|
||||
"from_B_c": [0, 0, 1],
|
||||
}
|
||||
)
|
||||
|
||||
columns = ["from_A_a", "from_A_b", "from_B_b", "from_B_c"]
|
||||
expected[columns] = expected[columns].astype(bool)
|
||||
if sparse:
|
||||
expected[columns] = expected[columns].astype(SparseDtype("bool", False))
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_with_na(self, df, sparse, dtype):
|
||||
df.loc[3, :] = [np.nan, np.nan, np.nan]
|
||||
result = get_dummies(df, dummy_na=True, sparse=sparse, dtype=dtype).sort_index(
|
||||
axis=1
|
||||
)
|
||||
|
||||
if sparse:
|
||||
arr = SparseArray
|
||||
if dtype.kind == "b":
|
||||
typ = SparseDtype(dtype, False)
|
||||
else:
|
||||
typ = SparseDtype(dtype, 0)
|
||||
else:
|
||||
arr = np.array
|
||||
typ = dtype
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3, np.nan],
|
||||
"A_a": arr([1, 0, 1, 0], dtype=typ),
|
||||
"A_b": arr([0, 1, 0, 0], dtype=typ),
|
||||
"A_nan": arr([0, 0, 0, 1], dtype=typ),
|
||||
"B_b": arr([1, 1, 0, 0], dtype=typ),
|
||||
"B_c": arr([0, 0, 1, 0], dtype=typ),
|
||||
"B_nan": arr([0, 0, 0, 1], dtype=typ),
|
||||
}
|
||||
).sort_index(axis=1)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(df, dummy_na=False, sparse=sparse, dtype=dtype)
|
||||
expected = expected[["C", "A_a", "A_b", "B_b", "B_c"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_with_categorical(self, df, sparse, dtype):
|
||||
df["cat"] = Categorical(["x", "y", "y"])
|
||||
result = get_dummies(df, sparse=sparse, dtype=dtype).sort_index(axis=1)
|
||||
if sparse:
|
||||
arr = SparseArray
|
||||
if dtype.kind == "b":
|
||||
typ = SparseDtype(dtype, False)
|
||||
else:
|
||||
typ = SparseDtype(dtype, 0)
|
||||
else:
|
||||
arr = np.array
|
||||
typ = dtype
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3],
|
||||
"A_a": arr([1, 0, 1], dtype=typ),
|
||||
"A_b": arr([0, 1, 0], dtype=typ),
|
||||
"B_b": arr([1, 1, 0], dtype=typ),
|
||||
"B_c": arr([0, 0, 1], dtype=typ),
|
||||
"cat_x": arr([1, 0, 0], dtype=typ),
|
||||
"cat_y": arr([0, 1, 1], dtype=typ),
|
||||
}
|
||||
).sort_index(axis=1)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"get_dummies_kwargs,expected",
|
||||
[
|
||||
(
|
||||
{"data": DataFrame({"ä": ["a"]})},
|
||||
DataFrame({"ä_a": [True]}),
|
||||
),
|
||||
(
|
||||
{"data": DataFrame({"x": ["ä"]})},
|
||||
DataFrame({"x_ä": [True]}),
|
||||
),
|
||||
(
|
||||
{"data": DataFrame({"x": ["a"]}), "prefix": "ä"},
|
||||
DataFrame({"ä_a": [True]}),
|
||||
),
|
||||
(
|
||||
{"data": DataFrame({"x": ["a"]}), "prefix_sep": "ä"},
|
||||
DataFrame({"xäa": [True]}),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_dataframe_dummies_unicode(self, get_dummies_kwargs, expected):
|
||||
# GH22084 get_dummies incorrectly encodes unicode characters
|
||||
# in dataframe column names
|
||||
result = get_dummies(**get_dummies_kwargs)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_basic_drop_first(self, sparse):
|
||||
# GH12402 Add a new parameter `drop_first` to avoid collinearity
|
||||
# Basic case
|
||||
s_list = list("abc")
|
||||
s_series = Series(s_list)
|
||||
s_series_index = Series(s_list, list("ABC"))
|
||||
|
||||
expected = DataFrame({"b": [0, 1, 0], "c": [0, 0, 1]}, dtype=bool)
|
||||
|
||||
result = get_dummies(s_list, drop_first=True, sparse=sparse)
|
||||
if sparse:
|
||||
expected = expected.apply(SparseArray, fill_value=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(s_series, drop_first=True, sparse=sparse)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected.index = list("ABC")
|
||||
result = get_dummies(s_series_index, drop_first=True, sparse=sparse)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_basic_drop_first_one_level(self, sparse):
|
||||
# Test the case that categorical variable only has one level.
|
||||
s_list = list("aaa")
|
||||
s_series = Series(s_list)
|
||||
s_series_index = Series(s_list, list("ABC"))
|
||||
|
||||
expected = DataFrame(index=RangeIndex(3))
|
||||
|
||||
result = get_dummies(s_list, drop_first=True, sparse=sparse)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(s_series, drop_first=True, sparse=sparse)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame(index=list("ABC"))
|
||||
result = get_dummies(s_series_index, drop_first=True, sparse=sparse)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_basic_drop_first_NA(self, sparse):
|
||||
# Test NA handling together with drop_first
|
||||
s_NA = ["a", "b", np.nan]
|
||||
res = get_dummies(s_NA, drop_first=True, sparse=sparse)
|
||||
exp = DataFrame({"b": [0, 1, 0]}, dtype=bool)
|
||||
if sparse:
|
||||
exp = exp.apply(SparseArray, fill_value=False)
|
||||
|
||||
tm.assert_frame_equal(res, exp)
|
||||
|
||||
res_na = get_dummies(s_NA, dummy_na=True, drop_first=True, sparse=sparse)
|
||||
exp_na = DataFrame({"b": [0, 1, 0], np.nan: [0, 0, 1]}, dtype=bool).reindex(
|
||||
["b", np.nan], axis=1
|
||||
)
|
||||
if sparse:
|
||||
exp_na = exp_na.apply(SparseArray, fill_value=False)
|
||||
tm.assert_frame_equal(res_na, exp_na)
|
||||
|
||||
res_just_na = get_dummies(
|
||||
[np.nan], dummy_na=True, drop_first=True, sparse=sparse
|
||||
)
|
||||
exp_just_na = DataFrame(index=RangeIndex(1))
|
||||
tm.assert_frame_equal(res_just_na, exp_just_na)
|
||||
|
||||
def test_dataframe_dummies_drop_first(self, df, sparse):
|
||||
df = df[["A", "B"]]
|
||||
result = get_dummies(df, drop_first=True, sparse=sparse)
|
||||
expected = DataFrame({"A_b": [0, 1, 0], "B_c": [0, 0, 1]}, dtype=bool)
|
||||
if sparse:
|
||||
expected = expected.apply(SparseArray, fill_value=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_drop_first_with_categorical(self, df, sparse, dtype):
|
||||
df["cat"] = Categorical(["x", "y", "y"])
|
||||
result = get_dummies(df, drop_first=True, sparse=sparse)
|
||||
expected = DataFrame(
|
||||
{"C": [1, 2, 3], "A_b": [0, 1, 0], "B_c": [0, 0, 1], "cat_y": [0, 1, 1]}
|
||||
)
|
||||
cols = ["A_b", "B_c", "cat_y"]
|
||||
expected[cols] = expected[cols].astype(bool)
|
||||
expected = expected[["C", "A_b", "B_c", "cat_y"]]
|
||||
if sparse:
|
||||
for col in cols:
|
||||
expected[col] = SparseArray(expected[col])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_dataframe_dummies_drop_first_with_na(self, df, sparse):
|
||||
df.loc[3, :] = [np.nan, np.nan, np.nan]
|
||||
result = get_dummies(
|
||||
df, dummy_na=True, drop_first=True, sparse=sparse
|
||||
).sort_index(axis=1)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"C": [1, 2, 3, np.nan],
|
||||
"A_b": [0, 1, 0, 0],
|
||||
"A_nan": [0, 0, 0, 1],
|
||||
"B_c": [0, 0, 1, 0],
|
||||
"B_nan": [0, 0, 0, 1],
|
||||
}
|
||||
)
|
||||
cols = ["A_b", "A_nan", "B_c", "B_nan"]
|
||||
expected[cols] = expected[cols].astype(bool)
|
||||
expected = expected.sort_index(axis=1)
|
||||
if sparse:
|
||||
for col in cols:
|
||||
expected[col] = SparseArray(expected[col])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = get_dummies(df, dummy_na=False, drop_first=True, sparse=sparse)
|
||||
expected = expected[["C", "A_b", "B_c"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_int_int(self):
|
||||
data = Series([1, 2, 1])
|
||||
result = get_dummies(data)
|
||||
expected = DataFrame([[1, 0], [0, 1], [1, 0]], columns=[1, 2], dtype=bool)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
data = Series(Categorical(["a", "b", "a"]))
|
||||
result = get_dummies(data)
|
||||
expected = DataFrame(
|
||||
[[1, 0], [0, 1], [1, 0]], columns=Categorical(["a", "b"]), dtype=bool
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_int_df(self, dtype):
|
||||
data = DataFrame(
|
||||
{
|
||||
"A": [1, 2, 1],
|
||||
"B": Categorical(["a", "b", "a"]),
|
||||
"C": [1, 2, 1],
|
||||
"D": [1.0, 2.0, 1.0],
|
||||
}
|
||||
)
|
||||
columns = ["C", "D", "A_1", "A_2", "B_a", "B_b"]
|
||||
expected = DataFrame(
|
||||
[[1, 1.0, 1, 0, 1, 0], [2, 2.0, 0, 1, 0, 1], [1, 1.0, 1, 0, 1, 0]],
|
||||
columns=columns,
|
||||
)
|
||||
expected[columns[2:]] = expected[columns[2:]].astype(dtype)
|
||||
result = get_dummies(data, columns=["A", "B"], dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_dataframe_dummies_preserve_categorical_dtype(self, dtype, ordered):
|
||||
# GH13854
|
||||
cat = Categorical(list("xy"), categories=list("xyz"), ordered=ordered)
|
||||
result = get_dummies(cat, dtype=dtype)
|
||||
|
||||
data = np.array([[1, 0, 0], [0, 1, 0]], dtype=self.effective_dtype(dtype))
|
||||
cols = CategoricalIndex(
|
||||
cat.categories, categories=cat.categories, ordered=ordered
|
||||
)
|
||||
expected = DataFrame(data, columns=cols, dtype=self.effective_dtype(dtype))
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("sparse", [True, False])
|
||||
def test_get_dummies_dont_sparsify_all_columns(self, sparse):
|
||||
# GH18914
|
||||
df = DataFrame.from_dict({"GDP": [1, 2], "Nation": ["AB", "CD"]})
|
||||
df = get_dummies(df, columns=["Nation"], sparse=sparse)
|
||||
df2 = df.reindex(columns=["GDP"])
|
||||
|
||||
tm.assert_frame_equal(df[["GDP"]], df2)
|
||||
|
||||
def test_get_dummies_duplicate_columns(self, df):
|
||||
# GH20839
|
||||
df.columns = ["A", "A", "A"]
|
||||
result = get_dummies(df).sort_index(axis=1)
|
||||
|
||||
expected = DataFrame(
|
||||
[
|
||||
[1, True, False, True, False],
|
||||
[2, False, True, True, False],
|
||||
[3, True, False, False, True],
|
||||
],
|
||||
columns=["A", "A_a", "A_b", "A_b", "A_c"],
|
||||
).sort_index(axis=1)
|
||||
|
||||
expected = expected.astype({"A": np.int64})
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_all_sparse(self):
|
||||
df = DataFrame({"A": [1, 2]})
|
||||
result = get_dummies(df, columns=["A"], sparse=True)
|
||||
dtype = SparseDtype("bool", False)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"A_1": SparseArray([1, 0], dtype=dtype),
|
||||
"A_2": SparseArray([0, 1], dtype=dtype),
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("values", ["baz"])
|
||||
def test_get_dummies_with_string_values(self, values):
|
||||
# issue #28383
|
||||
df = DataFrame(
|
||||
{
|
||||
"bar": [1, 2, 3, 4, 5, 6],
|
||||
"foo": ["one", "one", "one", "two", "two", "two"],
|
||||
"baz": ["A", "B", "C", "A", "B", "C"],
|
||||
"zoo": ["x", "y", "z", "q", "w", "t"],
|
||||
}
|
||||
)
|
||||
|
||||
msg = "Input must be a list-like for parameter `columns`"
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
get_dummies(df, columns=values)
|
||||
|
||||
def test_get_dummies_ea_dtype_series(self, any_numeric_ea_and_arrow_dtype):
|
||||
# GH#32430
|
||||
ser = Series(list("abca"))
|
||||
result = get_dummies(ser, dtype=any_numeric_ea_and_arrow_dtype)
|
||||
expected = DataFrame(
|
||||
{"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]},
|
||||
dtype=any_numeric_ea_and_arrow_dtype,
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_get_dummies_ea_dtype_dataframe(self, any_numeric_ea_and_arrow_dtype):
|
||||
# GH#32430
|
||||
df = DataFrame({"x": list("abca")})
|
||||
result = get_dummies(df, dtype=any_numeric_ea_and_arrow_dtype)
|
||||
expected = DataFrame(
|
||||
{"x_a": [1, 0, 0, 1], "x_b": [0, 1, 0, 0], "x_c": [0, 0, 1, 0]},
|
||||
dtype=any_numeric_ea_and_arrow_dtype,
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,254 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._libs import lib
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Index,
|
||||
MultiIndex,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_index, input_columns, input_values, "
|
||||
"expected_values, expected_columns, expected_index",
|
||||
[
|
||||
(
|
||||
["lev4"],
|
||||
"lev3",
|
||||
"values",
|
||||
[
|
||||
[0.0, np.nan],
|
||||
[np.nan, 1.0],
|
||||
[2.0, np.nan],
|
||||
[np.nan, 3.0],
|
||||
[4.0, np.nan],
|
||||
[np.nan, 5.0],
|
||||
[6.0, np.nan],
|
||||
[np.nan, 7.0],
|
||||
],
|
||||
Index([1, 2], name="lev3"),
|
||||
Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
|
||||
),
|
||||
(
|
||||
["lev4"],
|
||||
"lev3",
|
||||
lib.no_default,
|
||||
[
|
||||
[1.0, np.nan, 1.0, np.nan, 0.0, np.nan],
|
||||
[np.nan, 1.0, np.nan, 1.0, np.nan, 1.0],
|
||||
[1.0, np.nan, 2.0, np.nan, 2.0, np.nan],
|
||||
[np.nan, 1.0, np.nan, 2.0, np.nan, 3.0],
|
||||
[2.0, np.nan, 1.0, np.nan, 4.0, np.nan],
|
||||
[np.nan, 2.0, np.nan, 1.0, np.nan, 5.0],
|
||||
[2.0, np.nan, 2.0, np.nan, 6.0, np.nan],
|
||||
[np.nan, 2.0, np.nan, 2.0, np.nan, 7.0],
|
||||
],
|
||||
MultiIndex.from_tuples(
|
||||
[
|
||||
("lev1", 1),
|
||||
("lev1", 2),
|
||||
("lev2", 1),
|
||||
("lev2", 2),
|
||||
("values", 1),
|
||||
("values", 2),
|
||||
],
|
||||
names=[None, "lev3"],
|
||||
),
|
||||
Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
|
||||
),
|
||||
(
|
||||
["lev1", "lev2"],
|
||||
"lev3",
|
||||
"values",
|
||||
[[0, 1], [2, 3], [4, 5], [6, 7]],
|
||||
Index([1, 2], name="lev3"),
|
||||
MultiIndex.from_tuples(
|
||||
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
|
||||
),
|
||||
),
|
||||
(
|
||||
["lev1", "lev2"],
|
||||
"lev3",
|
||||
lib.no_default,
|
||||
[[1, 2, 0, 1], [3, 4, 2, 3], [5, 6, 4, 5], [7, 8, 6, 7]],
|
||||
MultiIndex.from_tuples(
|
||||
[("lev4", 1), ("lev4", 2), ("values", 1), ("values", 2)],
|
||||
names=[None, "lev3"],
|
||||
),
|
||||
MultiIndex.from_tuples(
|
||||
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_pivot_list_like_index(
|
||||
input_index,
|
||||
input_columns,
|
||||
input_values,
|
||||
expected_values,
|
||||
expected_columns,
|
||||
expected_index,
|
||||
):
|
||||
# GH 21425, test when index is given a list
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"lev1": [1, 1, 1, 1, 2, 2, 2, 2],
|
||||
"lev2": [1, 1, 2, 2, 1, 1, 2, 2],
|
||||
"lev3": [1, 2, 1, 2, 1, 2, 1, 2],
|
||||
"lev4": [1, 2, 3, 4, 5, 6, 7, 8],
|
||||
"values": [0, 1, 2, 3, 4, 5, 6, 7],
|
||||
}
|
||||
)
|
||||
|
||||
result = df.pivot(index=input_index, columns=input_columns, values=input_values)
|
||||
expected = pd.DataFrame(
|
||||
expected_values, columns=expected_columns, index=expected_index
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_index, input_columns, input_values, "
|
||||
"expected_values, expected_columns, expected_index",
|
||||
[
|
||||
(
|
||||
"lev4",
|
||||
["lev3"],
|
||||
"values",
|
||||
[
|
||||
[0.0, np.nan],
|
||||
[np.nan, 1.0],
|
||||
[2.0, np.nan],
|
||||
[np.nan, 3.0],
|
||||
[4.0, np.nan],
|
||||
[np.nan, 5.0],
|
||||
[6.0, np.nan],
|
||||
[np.nan, 7.0],
|
||||
],
|
||||
Index([1, 2], name="lev3"),
|
||||
Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
|
||||
),
|
||||
(
|
||||
["lev1", "lev2"],
|
||||
["lev3"],
|
||||
"values",
|
||||
[[0, 1], [2, 3], [4, 5], [6, 7]],
|
||||
Index([1, 2], name="lev3"),
|
||||
MultiIndex.from_tuples(
|
||||
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
|
||||
),
|
||||
),
|
||||
(
|
||||
["lev1"],
|
||||
["lev2", "lev3"],
|
||||
"values",
|
||||
[[0, 1, 2, 3], [4, 5, 6, 7]],
|
||||
MultiIndex.from_tuples(
|
||||
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev2", "lev3"]
|
||||
),
|
||||
Index([1, 2], name="lev1"),
|
||||
),
|
||||
(
|
||||
["lev1", "lev2"],
|
||||
["lev3", "lev4"],
|
||||
"values",
|
||||
[
|
||||
[0.0, 1.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
|
||||
[np.nan, np.nan, 2.0, 3.0, np.nan, np.nan, np.nan, np.nan],
|
||||
[np.nan, np.nan, np.nan, np.nan, 4.0, 5.0, np.nan, np.nan],
|
||||
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 6.0, 7.0],
|
||||
],
|
||||
MultiIndex.from_tuples(
|
||||
[(1, 1), (2, 2), (1, 3), (2, 4), (1, 5), (2, 6), (1, 7), (2, 8)],
|
||||
names=["lev3", "lev4"],
|
||||
),
|
||||
MultiIndex.from_tuples(
|
||||
[(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_pivot_list_like_columns(
|
||||
input_index,
|
||||
input_columns,
|
||||
input_values,
|
||||
expected_values,
|
||||
expected_columns,
|
||||
expected_index,
|
||||
):
|
||||
# GH 21425, test when columns is given a list
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"lev1": [1, 1, 1, 1, 2, 2, 2, 2],
|
||||
"lev2": [1, 1, 2, 2, 1, 1, 2, 2],
|
||||
"lev3": [1, 2, 1, 2, 1, 2, 1, 2],
|
||||
"lev4": [1, 2, 3, 4, 5, 6, 7, 8],
|
||||
"values": [0, 1, 2, 3, 4, 5, 6, 7],
|
||||
}
|
||||
)
|
||||
|
||||
result = df.pivot(index=input_index, columns=input_columns, values=input_values)
|
||||
expected = pd.DataFrame(
|
||||
expected_values, columns=expected_columns, index=expected_index
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_pivot_multiindexed_rows_and_cols(using_array_manager):
|
||||
# GH 36360
|
||||
|
||||
df = pd.DataFrame(
|
||||
data=np.arange(12).reshape(4, 3),
|
||||
columns=MultiIndex.from_tuples(
|
||||
[(0, 0), (0, 1), (0, 2)], names=["col_L0", "col_L1"]
|
||||
),
|
||||
index=MultiIndex.from_tuples(
|
||||
[(0, 0, 0), (0, 0, 1), (1, 1, 1), (1, 0, 0)],
|
||||
names=["idx_L0", "idx_L1", "idx_L2"],
|
||||
),
|
||||
)
|
||||
|
||||
res = df.pivot_table(
|
||||
index=["idx_L0"],
|
||||
columns=["idx_L1"],
|
||||
values=[(0, 1)],
|
||||
aggfunc=lambda col: col.values.sum(),
|
||||
)
|
||||
|
||||
expected = pd.DataFrame(
|
||||
data=[[5, np.nan], [10, 7.0]],
|
||||
columns=MultiIndex.from_tuples(
|
||||
[(0, 1, 0), (0, 1, 1)], names=["col_L0", "col_L1", "idx_L1"]
|
||||
),
|
||||
index=Index([0, 1], dtype="int64", name="idx_L0"),
|
||||
)
|
||||
if not using_array_manager:
|
||||
# BlockManager does not preserve the dtypes
|
||||
expected = expected.astype("float64")
|
||||
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
||||
|
||||
def test_pivot_df_multiindex_index_none():
|
||||
# GH 23955
|
||||
df = pd.DataFrame(
|
||||
[
|
||||
["A", "A1", "label1", 1],
|
||||
["A", "A2", "label2", 2],
|
||||
["B", "A1", "label1", 3],
|
||||
["B", "A2", "label2", 4],
|
||||
],
|
||||
columns=["index_1", "index_2", "label", "value"],
|
||||
)
|
||||
df = df.set_index(["index_1", "index_2"])
|
||||
|
||||
result = df.pivot(columns="label", values="value")
|
||||
expected = pd.DataFrame(
|
||||
[[1.0, np.nan], [np.nan, 2.0], [3.0, np.nan], [np.nan, 4.0]],
|
||||
index=df.index,
|
||||
columns=Index(["label1", "label2"], name="label"),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
|
@ -0,0 +1,302 @@
|
|||
import os
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
DatetimeIndex,
|
||||
Interval,
|
||||
IntervalIndex,
|
||||
NaT,
|
||||
Series,
|
||||
TimedeltaIndex,
|
||||
Timestamp,
|
||||
cut,
|
||||
date_range,
|
||||
isna,
|
||||
qcut,
|
||||
timedelta_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import CategoricalDtype as CDT
|
||||
|
||||
from pandas.tseries.offsets import (
|
||||
Day,
|
||||
Nano,
|
||||
)
|
||||
|
||||
|
||||
def test_qcut():
|
||||
arr = np.random.default_rng(2).standard_normal(1000)
|
||||
|
||||
# We store the bins as Index that have been
|
||||
# rounded to comparisons are a bit tricky.
|
||||
labels, _ = qcut(arr, 4, retbins=True)
|
||||
ex_bins = np.quantile(arr, [0, 0.25, 0.5, 0.75, 1.0])
|
||||
|
||||
result = labels.categories.left.values
|
||||
assert np.allclose(result, ex_bins[:-1], atol=1e-2)
|
||||
|
||||
result = labels.categories.right.values
|
||||
assert np.allclose(result, ex_bins[1:], atol=1e-2)
|
||||
|
||||
ex_levels = cut(arr, ex_bins, include_lowest=True)
|
||||
tm.assert_categorical_equal(labels, ex_levels)
|
||||
|
||||
|
||||
def test_qcut_bounds():
|
||||
arr = np.random.default_rng(2).standard_normal(1000)
|
||||
|
||||
factor = qcut(arr, 10, labels=False)
|
||||
assert len(np.unique(factor)) == 10
|
||||
|
||||
|
||||
def test_qcut_specify_quantiles():
|
||||
arr = np.random.default_rng(2).standard_normal(100)
|
||||
factor = qcut(arr, [0, 0.25, 0.5, 0.75, 1.0])
|
||||
|
||||
expected = qcut(arr, 4)
|
||||
tm.assert_categorical_equal(factor, expected)
|
||||
|
||||
|
||||
def test_qcut_all_bins_same():
|
||||
with pytest.raises(ValueError, match="edges.*unique"):
|
||||
qcut([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3)
|
||||
|
||||
|
||||
def test_qcut_include_lowest():
|
||||
values = np.arange(10)
|
||||
ii = qcut(values, 4)
|
||||
|
||||
ex_levels = IntervalIndex(
|
||||
[
|
||||
Interval(-0.001, 2.25),
|
||||
Interval(2.25, 4.5),
|
||||
Interval(4.5, 6.75),
|
||||
Interval(6.75, 9),
|
||||
]
|
||||
)
|
||||
tm.assert_index_equal(ii.categories, ex_levels)
|
||||
|
||||
|
||||
def test_qcut_nas():
|
||||
arr = np.random.default_rng(2).standard_normal(100)
|
||||
arr[:20] = np.nan
|
||||
|
||||
result = qcut(arr, 4)
|
||||
assert isna(result[:20]).all()
|
||||
|
||||
|
||||
def test_qcut_index():
|
||||
result = qcut([0, 2], 2)
|
||||
intervals = [Interval(-0.001, 1), Interval(1, 2)]
|
||||
|
||||
expected = Categorical(intervals, ordered=True)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
def test_qcut_binning_issues(datapath):
|
||||
# see gh-1978, gh-1979
|
||||
cut_file = datapath(os.path.join("reshape", "data", "cut_data.csv"))
|
||||
arr = np.loadtxt(cut_file)
|
||||
result = qcut(arr, 20)
|
||||
|
||||
starts = []
|
||||
ends = []
|
||||
|
||||
for lev in np.unique(result):
|
||||
s = lev.left
|
||||
e = lev.right
|
||||
assert s != e
|
||||
|
||||
starts.append(float(s))
|
||||
ends.append(float(e))
|
||||
|
||||
for (sp, sn), (ep, en) in zip(
|
||||
zip(starts[:-1], starts[1:]), zip(ends[:-1], ends[1:])
|
||||
):
|
||||
assert sp < sn
|
||||
assert ep < en
|
||||
assert ep <= sn
|
||||
|
||||
|
||||
def test_qcut_return_intervals():
|
||||
ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
|
||||
res = qcut(ser, [0, 0.333, 0.666, 1])
|
||||
|
||||
exp_levels = np.array(
|
||||
[Interval(-0.001, 2.664), Interval(2.664, 5.328), Interval(5.328, 8)]
|
||||
)
|
||||
exp = Series(exp_levels.take([0, 0, 0, 1, 1, 1, 2, 2, 2])).astype(CDT(ordered=True))
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("labels", ["foo", 1, True])
|
||||
def test_qcut_incorrect_labels(labels):
|
||||
# GH 13318
|
||||
values = range(5)
|
||||
msg = "Bin labels must either be False, None or passed in as a list-like argument"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
qcut(values, 4, labels=labels)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("labels", [["a", "b", "c"], list(range(3))])
|
||||
def test_qcut_wrong_length_labels(labels):
|
||||
# GH 13318
|
||||
values = range(10)
|
||||
msg = "Bin labels must be one fewer than the number of bin edges"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
qcut(values, 4, labels=labels)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"labels, expected",
|
||||
[
|
||||
(["a", "b", "c"], Categorical(["a", "b", "c"], ordered=True)),
|
||||
(list(range(3)), Categorical([0, 1, 2], ordered=True)),
|
||||
],
|
||||
)
|
||||
def test_qcut_list_like_labels(labels, expected):
|
||||
# GH 13318
|
||||
values = range(3)
|
||||
result = qcut(values, 3, labels=labels)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs,msg",
|
||||
[
|
||||
({"duplicates": "drop"}, None),
|
||||
({}, "Bin edges must be unique"),
|
||||
({"duplicates": "raise"}, "Bin edges must be unique"),
|
||||
({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"),
|
||||
],
|
||||
)
|
||||
def test_qcut_duplicates_bin(kwargs, msg):
|
||||
# see gh-7751
|
||||
values = [0, 0, 0, 0, 1, 2, 3]
|
||||
|
||||
if msg is not None:
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
qcut(values, 3, **kwargs)
|
||||
else:
|
||||
result = qcut(values, 3, **kwargs)
|
||||
expected = IntervalIndex([Interval(-0.001, 1), Interval(1, 3)])
|
||||
tm.assert_index_equal(result.categories, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data,start,end", [(9.0, 8.999, 9.0), (0.0, -0.001, 0.0), (-9.0, -9.001, -9.0)]
|
||||
)
|
||||
@pytest.mark.parametrize("length", [1, 2])
|
||||
@pytest.mark.parametrize("labels", [None, False])
|
||||
def test_single_quantile(data, start, end, length, labels):
|
||||
# see gh-15431
|
||||
ser = Series([data] * length)
|
||||
result = qcut(ser, 1, labels=labels)
|
||||
|
||||
if labels is None:
|
||||
intervals = IntervalIndex([Interval(start, end)] * length, closed="right")
|
||||
expected = Series(intervals).astype(CDT(ordered=True))
|
||||
else:
|
||||
expected = Series([0] * length, dtype=np.intp)
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"ser",
|
||||
[
|
||||
Series(DatetimeIndex(["20180101", NaT, "20180103"])),
|
||||
Series(TimedeltaIndex(["0 days", NaT, "2 days"])),
|
||||
],
|
||||
ids=lambda x: str(x.dtype),
|
||||
)
|
||||
def test_qcut_nat(ser):
|
||||
# see gh-19768
|
||||
intervals = IntervalIndex.from_tuples(
|
||||
[(ser[0] - Nano(), ser[2] - Day()), np.nan, (ser[2] - Day(), ser[2])]
|
||||
)
|
||||
expected = Series(Categorical(intervals, ordered=True))
|
||||
|
||||
result = qcut(ser, 2)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bins", [3, np.linspace(0, 1, 4)])
|
||||
def test_datetime_tz_qcut(bins):
|
||||
# see gh-19872
|
||||
tz = "US/Eastern"
|
||||
ser = Series(date_range("20130101", periods=3, tz=tz))
|
||||
|
||||
result = qcut(ser, bins)
|
||||
expected = Series(
|
||||
IntervalIndex(
|
||||
[
|
||||
Interval(
|
||||
Timestamp("2012-12-31 23:59:59.999999999", tz=tz),
|
||||
Timestamp("2013-01-01 16:00:00", tz=tz),
|
||||
),
|
||||
Interval(
|
||||
Timestamp("2013-01-01 16:00:00", tz=tz),
|
||||
Timestamp("2013-01-02 08:00:00", tz=tz),
|
||||
),
|
||||
Interval(
|
||||
Timestamp("2013-01-02 08:00:00", tz=tz),
|
||||
Timestamp("2013-01-03 00:00:00", tz=tz),
|
||||
),
|
||||
]
|
||||
)
|
||||
).astype(CDT(ordered=True))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"arg,expected_bins",
|
||||
[
|
||||
[
|
||||
timedelta_range("1day", periods=3),
|
||||
TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
||||
],
|
||||
[
|
||||
date_range("20180101", periods=3),
|
||||
DatetimeIndex(["2018-01-01", "2018-01-02", "2018-01-03"]),
|
||||
],
|
||||
],
|
||||
)
|
||||
def test_date_like_qcut_bins(arg, expected_bins):
|
||||
# see gh-19891
|
||||
ser = Series(arg)
|
||||
result, result_bins = qcut(ser, 2, retbins=True)
|
||||
tm.assert_index_equal(result_bins, expected_bins)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bins", [6, 7])
|
||||
@pytest.mark.parametrize(
|
||||
"box, compare",
|
||||
[
|
||||
(Series, tm.assert_series_equal),
|
||||
(np.array, tm.assert_categorical_equal),
|
||||
(list, tm.assert_equal),
|
||||
],
|
||||
)
|
||||
def test_qcut_bool_coercion_to_int(bins, box, compare):
|
||||
# issue 20303
|
||||
data_expected = box([0, 1, 1, 0, 1] * 10)
|
||||
data_result = box([False, True, True, False, True] * 10)
|
||||
expected = qcut(data_expected, bins, duplicates="drop")
|
||||
result = qcut(data_result, bins, duplicates="drop")
|
||||
compare(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("q", [2, 5, 10])
|
||||
def test_qcut_nullable_integer(q, any_numeric_ea_dtype):
|
||||
arr = pd.array(np.arange(100), dtype=any_numeric_ea_dtype)
|
||||
arr[::2] = pd.NA
|
||||
|
||||
result = qcut(arr, q)
|
||||
expected = qcut(arr.astype(float), q)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
|
@ -0,0 +1,363 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.concat import union_categoricals
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestUnionCategoricals:
|
||||
@pytest.mark.parametrize(
|
||||
"a, b, combined",
|
||||
[
|
||||
(list("abc"), list("abd"), list("abcabd")),
|
||||
([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]),
|
||||
([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]),
|
||||
(
|
||||
["b", "b", np.nan, "a"],
|
||||
["a", np.nan, "c"],
|
||||
["b", "b", np.nan, "a", "a", np.nan, "c"],
|
||||
),
|
||||
(
|
||||
pd.date_range("2014-01-01", "2014-01-05"),
|
||||
pd.date_range("2014-01-06", "2014-01-07"),
|
||||
pd.date_range("2014-01-01", "2014-01-07"),
|
||||
),
|
||||
(
|
||||
pd.date_range("2014-01-01", "2014-01-05", tz="US/Central"),
|
||||
pd.date_range("2014-01-06", "2014-01-07", tz="US/Central"),
|
||||
pd.date_range("2014-01-01", "2014-01-07", tz="US/Central"),
|
||||
),
|
||||
(
|
||||
pd.period_range("2014-01-01", "2014-01-05"),
|
||||
pd.period_range("2014-01-06", "2014-01-07"),
|
||||
pd.period_range("2014-01-01", "2014-01-07"),
|
||||
),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("box", [Categorical, CategoricalIndex, Series])
|
||||
def test_union_categorical(self, a, b, combined, box):
|
||||
# GH 13361
|
||||
result = union_categoricals([box(Categorical(a)), box(Categorical(b))])
|
||||
expected = Categorical(combined)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categorical_ordered_appearance(self):
|
||||
# new categories ordered by appearance
|
||||
s = Categorical(["x", "y", "z"])
|
||||
s2 = Categorical(["a", "b", "c"])
|
||||
result = union_categoricals([s, s2])
|
||||
expected = Categorical(
|
||||
["x", "y", "z", "a", "b", "c"], categories=["x", "y", "z", "a", "b", "c"]
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categorical_ordered_true(self):
|
||||
s = Categorical([0, 1.2, 2], ordered=True)
|
||||
s2 = Categorical([0, 1.2, 2], ordered=True)
|
||||
result = union_categoricals([s, s2])
|
||||
expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categorical_match_types(self):
|
||||
# must exactly match types
|
||||
s = Categorical([0, 1.2, 2])
|
||||
s2 = Categorical([2, 3, 4])
|
||||
msg = "dtype of categories must be the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([s, s2])
|
||||
|
||||
def test_union_categorical_empty(self):
|
||||
msg = "No Categoricals to union"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
union_categoricals([])
|
||||
|
||||
def test_union_categoricals_nan(self):
|
||||
# GH 13759
|
||||
res = union_categoricals(
|
||||
[Categorical([1, 2, np.nan]), Categorical([3, 2, np.nan])]
|
||||
)
|
||||
exp = Categorical([1, 2, np.nan, 3, 2, np.nan])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
res = union_categoricals(
|
||||
[Categorical(["A", "B"]), Categorical(["B", "B", np.nan])]
|
||||
)
|
||||
exp = Categorical(["A", "B", "B", "B", np.nan])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
val1 = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-03-01"), pd.NaT]
|
||||
val2 = [pd.NaT, pd.Timestamp("2011-01-01"), pd.Timestamp("2011-02-01")]
|
||||
|
||||
res = union_categoricals([Categorical(val1), Categorical(val2)])
|
||||
exp = Categorical(
|
||||
val1 + val2,
|
||||
categories=[
|
||||
pd.Timestamp("2011-01-01"),
|
||||
pd.Timestamp("2011-03-01"),
|
||||
pd.Timestamp("2011-02-01"),
|
||||
],
|
||||
)
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
# all NaN
|
||||
res = union_categoricals(
|
||||
[
|
||||
Categorical(np.array([np.nan, np.nan], dtype=object)),
|
||||
Categorical(["X"]),
|
||||
]
|
||||
)
|
||||
exp = Categorical([np.nan, np.nan, "X"])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
res = union_categoricals(
|
||||
[Categorical([np.nan, np.nan]), Categorical([np.nan, np.nan])]
|
||||
)
|
||||
exp = Categorical([np.nan, np.nan, np.nan, np.nan])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
@pytest.mark.parametrize("val", [[], ["1"]])
|
||||
def test_union_categoricals_empty(self, val):
|
||||
# GH 13759
|
||||
res = union_categoricals([Categorical([]), Categorical(val)])
|
||||
exp = Categorical(val)
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
def test_union_categorical_same_category(self):
|
||||
# check fastpath
|
||||
c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4])
|
||||
c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4])
|
||||
res = union_categoricals([c1, c2])
|
||||
exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
def test_union_categorical_same_category_str(self):
|
||||
c1 = Categorical(["z", "z", "z"], categories=["x", "y", "z"])
|
||||
c2 = Categorical(["x", "x", "x"], categories=["x", "y", "z"])
|
||||
res = union_categoricals([c1, c2])
|
||||
exp = Categorical(["z", "z", "z", "x", "x", "x"], categories=["x", "y", "z"])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
def test_union_categorical_same_categories_different_order(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/19096
|
||||
c1 = Categorical(["a", "b", "c"], categories=["a", "b", "c"])
|
||||
c2 = Categorical(["a", "b", "c"], categories=["b", "a", "c"])
|
||||
result = union_categoricals([c1, c2])
|
||||
expected = Categorical(
|
||||
["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"]
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_ordered(self):
|
||||
c1 = Categorical([1, 2, 3], ordered=True)
|
||||
c2 = Categorical([1, 2, 3], ordered=False)
|
||||
|
||||
msg = "Categorical.ordered must be the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, c2])
|
||||
|
||||
res = union_categoricals([c1, c1])
|
||||
exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True)
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
c1 = Categorical([1, 2, 3, np.nan], ordered=True)
|
||||
c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True)
|
||||
|
||||
res = union_categoricals([c1, c2])
|
||||
exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True)
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
c1 = Categorical([1, 2, 3], ordered=True)
|
||||
c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True)
|
||||
|
||||
msg = "to union ordered Categoricals, all categories must be the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, c2])
|
||||
|
||||
def test_union_categoricals_ignore_order(self):
|
||||
# GH 15219
|
||||
c1 = Categorical([1, 2, 3], ordered=True)
|
||||
c2 = Categorical([1, 2, 3], ordered=False)
|
||||
|
||||
res = union_categoricals([c1, c2], ignore_order=True)
|
||||
exp = Categorical([1, 2, 3, 1, 2, 3])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
msg = "Categorical.ordered must be the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, c2], ignore_order=False)
|
||||
|
||||
res = union_categoricals([c1, c1], ignore_order=True)
|
||||
exp = Categorical([1, 2, 3, 1, 2, 3])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
res = union_categoricals([c1, c1], ignore_order=False)
|
||||
exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True)
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
c1 = Categorical([1, 2, 3, np.nan], ordered=True)
|
||||
c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True)
|
||||
|
||||
res = union_categoricals([c1, c2], ignore_order=True)
|
||||
exp = Categorical([1, 2, 3, np.nan, 3, 2])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
c1 = Categorical([1, 2, 3], ordered=True)
|
||||
c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True)
|
||||
|
||||
res = union_categoricals([c1, c2], ignore_order=True)
|
||||
exp = Categorical([1, 2, 3, 1, 2, 3])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True)
|
||||
exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3])
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
c1 = Categorical([1, 2, 3], ordered=True)
|
||||
c2 = Categorical([4, 5, 6], ordered=True)
|
||||
result = union_categoricals([c1, c2], ignore_order=True)
|
||||
expected = Categorical([1, 2, 3, 4, 5, 6])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
msg = "to union ordered Categoricals, all categories must be the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, c2], ignore_order=False)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, c2])
|
||||
|
||||
def test_union_categoricals_sort(self):
|
||||
# GH 13846
|
||||
c1 = Categorical(["x", "y", "z"])
|
||||
c2 = Categorical(["a", "b", "c"])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical(
|
||||
["x", "y", "z", "a", "b", "c"], categories=["a", "b", "c", "x", "y", "z"]
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# fastpath
|
||||
c1 = Categorical(["a", "b"], categories=["b", "a", "c"])
|
||||
c2 = Categorical(["b", "c"], categories=["b", "a", "c"])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical(["a", "b", "b", "c"], categories=["a", "b", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c1 = Categorical(["a", "b"], categories=["c", "a", "b"])
|
||||
c2 = Categorical(["b", "c"], categories=["c", "a", "b"])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical(["a", "b", "b", "c"], categories=["a", "b", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# fastpath - skip resort
|
||||
c1 = Categorical(["a", "b"], categories=["a", "b", "c"])
|
||||
c2 = Categorical(["b", "c"], categories=["a", "b", "c"])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical(["a", "b", "b", "c"], categories=["a", "b", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c1 = Categorical(["x", np.nan])
|
||||
c2 = Categorical([np.nan, "b"])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical(["x", np.nan, np.nan, "b"], categories=["b", "x"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c1 = Categorical([np.nan])
|
||||
c2 = Categorical([np.nan])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical([np.nan, np.nan])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c1 = Categorical([])
|
||||
c2 = Categorical([])
|
||||
result = union_categoricals([c1, c2], sort_categories=True)
|
||||
expected = Categorical([])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c1 = Categorical(["b", "a"], categories=["b", "a", "c"], ordered=True)
|
||||
c2 = Categorical(["a", "c"], categories=["b", "a", "c"], ordered=True)
|
||||
msg = "Cannot use sort_categories=True with ordered Categoricals"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, c2], sort_categories=True)
|
||||
|
||||
def test_union_categoricals_sort_false(self):
|
||||
# GH 13846
|
||||
c1 = Categorical(["x", "y", "z"])
|
||||
c2 = Categorical(["a", "b", "c"])
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical(
|
||||
["x", "y", "z", "a", "b", "c"], categories=["x", "y", "z", "a", "b", "c"]
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_sort_false_fastpath(self):
|
||||
# fastpath
|
||||
c1 = Categorical(["a", "b"], categories=["b", "a", "c"])
|
||||
c2 = Categorical(["b", "c"], categories=["b", "a", "c"])
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical(["a", "b", "b", "c"], categories=["b", "a", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_sort_false_skipresort(self):
|
||||
# fastpath - skip resort
|
||||
c1 = Categorical(["a", "b"], categories=["a", "b", "c"])
|
||||
c2 = Categorical(["b", "c"], categories=["a", "b", "c"])
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical(["a", "b", "b", "c"], categories=["a", "b", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_sort_false_one_nan(self):
|
||||
c1 = Categorical(["x", np.nan])
|
||||
c2 = Categorical([np.nan, "b"])
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical(["x", np.nan, np.nan, "b"], categories=["x", "b"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_sort_false_only_nan(self):
|
||||
c1 = Categorical([np.nan])
|
||||
c2 = Categorical([np.nan])
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical([np.nan, np.nan])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_sort_false_empty(self):
|
||||
c1 = Categorical([])
|
||||
c2 = Categorical([])
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical([])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categoricals_sort_false_ordered_true(self):
|
||||
c1 = Categorical(["b", "a"], categories=["b", "a", "c"], ordered=True)
|
||||
c2 = Categorical(["a", "c"], categories=["b", "a", "c"], ordered=True)
|
||||
result = union_categoricals([c1, c2], sort_categories=False)
|
||||
expected = Categorical(
|
||||
["b", "a", "a", "c"], categories=["b", "a", "c"], ordered=True
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_union_categorical_unwrap(self):
|
||||
# GH 14173
|
||||
c1 = Categorical(["a", "b"])
|
||||
c2 = Series(["b", "c"], dtype="category")
|
||||
result = union_categoricals([c1, c2])
|
||||
expected = Categorical(["a", "b", "b", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c2 = CategoricalIndex(c2)
|
||||
result = union_categoricals([c1, c2])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
c1 = Series(c1)
|
||||
result = union_categoricals([c1, c2])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
msg = "all components to combine must be Categorical"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
union_categoricals([c1, ["a", "b", "c"]])
|
||||
|
|
@ -0,0 +1,79 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Index,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.reshape.util import cartesian_product
|
||||
|
||||
|
||||
class TestCartesianProduct:
|
||||
def test_simple(self):
|
||||
x, y = list("ABC"), [1, 22]
|
||||
result1, result2 = cartesian_product([x, y])
|
||||
expected1 = np.array(["A", "A", "B", "B", "C", "C"])
|
||||
expected2 = np.array([1, 22, 1, 22, 1, 22])
|
||||
tm.assert_numpy_array_equal(result1, expected1)
|
||||
tm.assert_numpy_array_equal(result2, expected2)
|
||||
|
||||
def test_datetimeindex(self):
|
||||
# regression test for GitHub issue #6439
|
||||
# make sure that the ordering on datetimeindex is consistent
|
||||
x = date_range("2000-01-01", periods=2)
|
||||
result1, result2 = (Index(y).day for y in cartesian_product([x, x]))
|
||||
expected1 = Index([1, 1, 2, 2], dtype=np.int32)
|
||||
expected2 = Index([1, 2, 1, 2], dtype=np.int32)
|
||||
tm.assert_index_equal(result1, expected1)
|
||||
tm.assert_index_equal(result2, expected2)
|
||||
|
||||
def test_tzaware_retained(self):
|
||||
x = date_range("2000-01-01", periods=2, tz="US/Pacific")
|
||||
y = np.array([3, 4])
|
||||
result1, result2 = cartesian_product([x, y])
|
||||
|
||||
expected = x.repeat(2)
|
||||
tm.assert_index_equal(result1, expected)
|
||||
|
||||
def test_tzaware_retained_categorical(self):
|
||||
x = date_range("2000-01-01", periods=2, tz="US/Pacific").astype("category")
|
||||
y = np.array([3, 4])
|
||||
result1, result2 = cartesian_product([x, y])
|
||||
|
||||
expected = x.repeat(2)
|
||||
tm.assert_index_equal(result1, expected)
|
||||
|
||||
@pytest.mark.parametrize("x, y", [[[], []], [[0, 1], []], [[], ["a", "b", "c"]]])
|
||||
def test_empty(self, x, y):
|
||||
# product of empty factors
|
||||
expected1 = np.array([], dtype=np.asarray(x).dtype)
|
||||
expected2 = np.array([], dtype=np.asarray(y).dtype)
|
||||
result1, result2 = cartesian_product([x, y])
|
||||
tm.assert_numpy_array_equal(result1, expected1)
|
||||
tm.assert_numpy_array_equal(result2, expected2)
|
||||
|
||||
def test_empty_input(self):
|
||||
# empty product (empty input):
|
||||
result = cartesian_product([])
|
||||
expected = []
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"X", [1, [1], [1, 2], [[1], 2], "a", ["a"], ["a", "b"], [["a"], "b"]]
|
||||
)
|
||||
def test_invalid_input(self, X):
|
||||
msg = "Input must be a list-like of list-likes"
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cartesian_product(X=X)
|
||||
|
||||
def test_exceed_product_space(self):
|
||||
# GH31355: raise useful error when produce space is too large
|
||||
msg = "Product space too large to allocate arrays!"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
dims = [np.arange(0, 22, dtype=np.int16) for i in range(12)] + [
|
||||
(np.arange(15128, dtype=np.int16)),
|
||||
]
|
||||
cartesian_product(X=dims)
|
||||
Loading…
Add table
Add a link
Reference in a new issue