Initial commit: Masina-Dock Vehicle Management System
This commit is contained in:
commit
ae923e2c41
4999 changed files with 1607266 additions and 0 deletions
162
AppDir/usr/lib/python3.12/site-packages/numpy/__config__.py
Normal file
162
AppDir/usr/lib/python3.12/site-packages/numpy/__config__.py
Normal file
|
|
@ -0,0 +1,162 @@
|
|||
# This file is generated by numpy's build process
|
||||
# It contains system_info results at the time of building this package.
|
||||
from enum import Enum
|
||||
from numpy.core._multiarray_umath import (
|
||||
__cpu_features__,
|
||||
__cpu_baseline__,
|
||||
__cpu_dispatch__,
|
||||
)
|
||||
|
||||
__all__ = ["show"]
|
||||
_built_with_meson = True
|
||||
|
||||
|
||||
class DisplayModes(Enum):
|
||||
stdout = "stdout"
|
||||
dicts = "dicts"
|
||||
|
||||
|
||||
def _cleanup(d):
|
||||
"""
|
||||
Removes empty values in a `dict` recursively
|
||||
This ensures we remove values that Meson could not provide to CONFIG
|
||||
"""
|
||||
if isinstance(d, dict):
|
||||
return {k: _cleanup(v) for k, v in d.items() if v and _cleanup(v)}
|
||||
else:
|
||||
return d
|
||||
|
||||
|
||||
CONFIG = _cleanup(
|
||||
{
|
||||
"Compilers": {
|
||||
"c": {
|
||||
"name": "gcc",
|
||||
"linker": r"ld.bfd",
|
||||
"version": "10.2.1",
|
||||
"commands": r"cc",
|
||||
"args": r"-fno-strict-aliasing",
|
||||
"linker args": r"-Wl,--strip-debug, -fno-strict-aliasing",
|
||||
},
|
||||
"cython": {
|
||||
"name": "cython",
|
||||
"linker": r"cython",
|
||||
"version": "3.0.8",
|
||||
"commands": r"cython",
|
||||
"args": r"",
|
||||
"linker args": r"",
|
||||
},
|
||||
"c++": {
|
||||
"name": "gcc",
|
||||
"linker": r"ld.bfd",
|
||||
"version": "10.2.1",
|
||||
"commands": r"c++",
|
||||
"args": r"",
|
||||
"linker args": r"-Wl,--strip-debug",
|
||||
},
|
||||
},
|
||||
"Machine Information": {
|
||||
"host": {
|
||||
"cpu": "x86_64",
|
||||
"family": "x86_64",
|
||||
"endian": "little",
|
||||
"system": "linux",
|
||||
},
|
||||
"build": {
|
||||
"cpu": "x86_64",
|
||||
"family": "x86_64",
|
||||
"endian": "little",
|
||||
"system": "linux",
|
||||
},
|
||||
"cross-compiled": bool("False".lower().replace("false", "")),
|
||||
},
|
||||
"Build Dependencies": {
|
||||
"blas": {
|
||||
"name": "openblas64",
|
||||
"found": bool("True".lower().replace("false", "")),
|
||||
"version": "0.3.23.dev",
|
||||
"detection method": "pkgconfig",
|
||||
"include directory": r"/usr/local/include",
|
||||
"lib directory": r"/usr/local/lib",
|
||||
"openblas configuration": r"USE_64BITINT=1 DYNAMIC_ARCH=1 DYNAMIC_OLDER= NO_CBLAS= NO_LAPACK= NO_LAPACKE= NO_AFFINITY=1 USE_OPENMP= HASWELL MAX_THREADS=2",
|
||||
"pc file directory": r"/usr/local/lib/pkgconfig",
|
||||
},
|
||||
"lapack": {
|
||||
"name": "dep140551260102944",
|
||||
"found": bool("True".lower().replace("false", "")),
|
||||
"version": "1.26.4",
|
||||
"detection method": "internal",
|
||||
"include directory": r"unknown",
|
||||
"lib directory": r"unknown",
|
||||
"openblas configuration": r"unknown",
|
||||
"pc file directory": r"unknown",
|
||||
},
|
||||
},
|
||||
"Python Information": {
|
||||
"path": r"/opt/python/cp312-cp312/bin/python",
|
||||
"version": "3.12",
|
||||
},
|
||||
"SIMD Extensions": {
|
||||
"baseline": __cpu_baseline__,
|
||||
"found": [
|
||||
feature for feature in __cpu_dispatch__ if __cpu_features__[feature]
|
||||
],
|
||||
"not found": [
|
||||
feature for feature in __cpu_dispatch__ if not __cpu_features__[feature]
|
||||
],
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def _check_pyyaml():
|
||||
import yaml
|
||||
|
||||
return yaml
|
||||
|
||||
|
||||
def show(mode=DisplayModes.stdout.value):
|
||||
"""
|
||||
Show libraries and system information on which NumPy was built
|
||||
and is being used
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mode : {`'stdout'`, `'dicts'`}, optional.
|
||||
Indicates how to display the config information.
|
||||
`'stdout'` prints to console, `'dicts'` returns a dictionary
|
||||
of the configuration.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : {`dict`, `None`}
|
||||
If mode is `'dicts'`, a dict is returned, else None
|
||||
|
||||
See Also
|
||||
--------
|
||||
get_include : Returns the directory containing NumPy C
|
||||
header files.
|
||||
|
||||
Notes
|
||||
-----
|
||||
1. The `'stdout'` mode will give more readable
|
||||
output if ``pyyaml`` is installed
|
||||
|
||||
"""
|
||||
if mode == DisplayModes.stdout.value:
|
||||
try: # Non-standard library, check import
|
||||
yaml = _check_pyyaml()
|
||||
|
||||
print(yaml.dump(CONFIG))
|
||||
except ModuleNotFoundError:
|
||||
import warnings
|
||||
import json
|
||||
|
||||
warnings.warn("Install `pyyaml` for better output", stacklevel=1)
|
||||
print(json.dumps(CONFIG, indent=2))
|
||||
elif mode == DisplayModes.dicts.value:
|
||||
return CONFIG
|
||||
else:
|
||||
raise AttributeError(
|
||||
f"Invalid `mode`, use one of: {', '.join([e.value for e in DisplayModes])}"
|
||||
)
|
||||
1050
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd
Normal file
1050
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd
Normal file
File diff suppressed because it is too large
Load diff
1015
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.pxd
Normal file
1015
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.pxd
Normal file
File diff suppressed because it is too large
Load diff
461
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.py
Normal file
461
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.py
Normal file
|
|
@ -0,0 +1,461 @@
|
|||
"""
|
||||
NumPy
|
||||
=====
|
||||
|
||||
Provides
|
||||
1. An array object of arbitrary homogeneous items
|
||||
2. Fast mathematical operations over arrays
|
||||
3. Linear Algebra, Fourier Transforms, Random Number Generation
|
||||
|
||||
How to use the documentation
|
||||
----------------------------
|
||||
Documentation is available in two forms: docstrings provided
|
||||
with the code, and a loose standing reference guide, available from
|
||||
`the NumPy homepage <https://numpy.org>`_.
|
||||
|
||||
We recommend exploring the docstrings using
|
||||
`IPython <https://ipython.org>`_, an advanced Python shell with
|
||||
TAB-completion and introspection capabilities. See below for further
|
||||
instructions.
|
||||
|
||||
The docstring examples assume that `numpy` has been imported as ``np``::
|
||||
|
||||
>>> import numpy as np
|
||||
|
||||
Code snippets are indicated by three greater-than signs::
|
||||
|
||||
>>> x = 42
|
||||
>>> x = x + 1
|
||||
|
||||
Use the built-in ``help`` function to view a function's docstring::
|
||||
|
||||
>>> help(np.sort)
|
||||
... # doctest: +SKIP
|
||||
|
||||
For some objects, ``np.info(obj)`` may provide additional help. This is
|
||||
particularly true if you see the line "Help on ufunc object:" at the top
|
||||
of the help() page. Ufuncs are implemented in C, not Python, for speed.
|
||||
The native Python help() does not know how to view their help, but our
|
||||
np.info() function does.
|
||||
|
||||
To search for documents containing a keyword, do::
|
||||
|
||||
>>> np.lookfor('keyword')
|
||||
... # doctest: +SKIP
|
||||
|
||||
General-purpose documents like a glossary and help on the basic concepts
|
||||
of numpy are available under the ``doc`` sub-module::
|
||||
|
||||
>>> from numpy import doc
|
||||
>>> help(doc)
|
||||
... # doctest: +SKIP
|
||||
|
||||
Available subpackages
|
||||
---------------------
|
||||
lib
|
||||
Basic functions used by several sub-packages.
|
||||
random
|
||||
Core Random Tools
|
||||
linalg
|
||||
Core Linear Algebra Tools
|
||||
fft
|
||||
Core FFT routines
|
||||
polynomial
|
||||
Polynomial tools
|
||||
testing
|
||||
NumPy testing tools
|
||||
distutils
|
||||
Enhancements to distutils with support for
|
||||
Fortran compilers support and more (for Python <= 3.11).
|
||||
|
||||
Utilities
|
||||
---------
|
||||
test
|
||||
Run numpy unittests
|
||||
show_config
|
||||
Show numpy build configuration
|
||||
matlib
|
||||
Make everything matrices.
|
||||
__version__
|
||||
NumPy version string
|
||||
|
||||
Viewing documentation using IPython
|
||||
-----------------------------------
|
||||
|
||||
Start IPython and import `numpy` usually under the alias ``np``: `import
|
||||
numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste
|
||||
examples into the shell. To see which functions are available in `numpy`,
|
||||
type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
|
||||
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
|
||||
down the list. To view the docstring for a function, use
|
||||
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
|
||||
the source code).
|
||||
|
||||
Copies vs. in-place operation
|
||||
-----------------------------
|
||||
Most of the functions in `numpy` return a copy of the array argument
|
||||
(e.g., `np.sort`). In-place versions of these functions are often
|
||||
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
|
||||
Exceptions to this rule are documented.
|
||||
|
||||
"""
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from ._globals import _NoValue, _CopyMode
|
||||
# These exceptions were moved in 1.25 and are hidden from __dir__()
|
||||
from .exceptions import (
|
||||
ComplexWarning, ModuleDeprecationWarning, VisibleDeprecationWarning,
|
||||
TooHardError, AxisError)
|
||||
|
||||
|
||||
# If a version with git hash was stored, use that instead
|
||||
from . import version
|
||||
from .version import __version__
|
||||
|
||||
# We first need to detect if we're being called as part of the numpy setup
|
||||
# procedure itself in a reliable manner.
|
||||
try:
|
||||
__NUMPY_SETUP__
|
||||
except NameError:
|
||||
__NUMPY_SETUP__ = False
|
||||
|
||||
if __NUMPY_SETUP__:
|
||||
sys.stderr.write('Running from numpy source directory.\n')
|
||||
else:
|
||||
# Allow distributors to run custom init code before importing numpy.core
|
||||
from . import _distributor_init
|
||||
|
||||
try:
|
||||
from numpy.__config__ import show as show_config
|
||||
except ImportError as e:
|
||||
msg = """Error importing numpy: you should not try to import numpy from
|
||||
its source directory; please exit the numpy source tree, and relaunch
|
||||
your python interpreter from there."""
|
||||
raise ImportError(msg) from e
|
||||
|
||||
__all__ = [
|
||||
'exceptions', 'ModuleDeprecationWarning', 'VisibleDeprecationWarning',
|
||||
'ComplexWarning', 'TooHardError', 'AxisError']
|
||||
|
||||
# mapping of {name: (value, deprecation_msg)}
|
||||
__deprecated_attrs__ = {}
|
||||
|
||||
from . import core
|
||||
from .core import *
|
||||
from . import compat
|
||||
from . import exceptions
|
||||
from . import dtypes
|
||||
from . import lib
|
||||
# NOTE: to be revisited following future namespace cleanup.
|
||||
# See gh-14454 and gh-15672 for discussion.
|
||||
from .lib import *
|
||||
|
||||
from . import linalg
|
||||
from . import fft
|
||||
from . import polynomial
|
||||
from . import random
|
||||
from . import ctypeslib
|
||||
from . import ma
|
||||
from . import matrixlib as _mat
|
||||
from .matrixlib import *
|
||||
|
||||
# Deprecations introduced in NumPy 1.20.0, 2020-06-06
|
||||
import builtins as _builtins
|
||||
|
||||
_msg = (
|
||||
"module 'numpy' has no attribute '{n}'.\n"
|
||||
"`np.{n}` was a deprecated alias for the builtin `{n}`. "
|
||||
"To avoid this error in existing code, use `{n}` by itself. "
|
||||
"Doing this will not modify any behavior and is safe. {extended_msg}\n"
|
||||
"The aliases was originally deprecated in NumPy 1.20; for more "
|
||||
"details and guidance see the original release note at:\n"
|
||||
" https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
|
||||
|
||||
_specific_msg = (
|
||||
"If you specifically wanted the numpy scalar type, use `np.{}` here.")
|
||||
|
||||
_int_extended_msg = (
|
||||
"When replacing `np.{}`, you may wish to use e.g. `np.int64` "
|
||||
"or `np.int32` to specify the precision. If you wish to review "
|
||||
"your current use, check the release note link for "
|
||||
"additional information.")
|
||||
|
||||
_type_info = [
|
||||
("object", ""), # The NumPy scalar only exists by name.
|
||||
("bool", _specific_msg.format("bool_")),
|
||||
("float", _specific_msg.format("float64")),
|
||||
("complex", _specific_msg.format("complex128")),
|
||||
("str", _specific_msg.format("str_")),
|
||||
("int", _int_extended_msg.format("int"))]
|
||||
|
||||
__former_attrs__ = {
|
||||
n: _msg.format(n=n, extended_msg=extended_msg)
|
||||
for n, extended_msg in _type_info
|
||||
}
|
||||
|
||||
# Future warning introduced in NumPy 1.24.0, 2022-11-17
|
||||
_msg = (
|
||||
"`np.{n}` is a deprecated alias for `{an}`. (Deprecated NumPy 1.24)")
|
||||
|
||||
# Some of these are awkward (since `np.str` may be preferable in the long
|
||||
# term), but overall the names ending in 0 seem undesirable
|
||||
_type_info = [
|
||||
("bool8", bool_, "np.bool_"),
|
||||
("int0", intp, "np.intp"),
|
||||
("uint0", uintp, "np.uintp"),
|
||||
("str0", str_, "np.str_"),
|
||||
("bytes0", bytes_, "np.bytes_"),
|
||||
("void0", void, "np.void"),
|
||||
("object0", object_,
|
||||
"`np.object0` is a deprecated alias for `np.object_`. "
|
||||
"`object` can be used instead. (Deprecated NumPy 1.24)")]
|
||||
|
||||
# Some of these could be defined right away, but most were aliases to
|
||||
# the Python objects and only removed in NumPy 1.24. Defining them should
|
||||
# probably wait for NumPy 1.26 or 2.0.
|
||||
# When defined, these should possibly not be added to `__all__` to avoid
|
||||
# import with `from numpy import *`.
|
||||
__future_scalars__ = {"bool", "long", "ulong", "str", "bytes", "object"}
|
||||
|
||||
__deprecated_attrs__.update({
|
||||
n: (alias, _msg.format(n=n, an=an)) for n, alias, an in _type_info})
|
||||
|
||||
import math
|
||||
|
||||
__deprecated_attrs__['math'] = (math,
|
||||
"`np.math` is a deprecated alias for the standard library `math` "
|
||||
"module (Deprecated Numpy 1.25). Replace usages of `np.math` with "
|
||||
"`math`")
|
||||
|
||||
del math, _msg, _type_info
|
||||
|
||||
from .core import abs
|
||||
# now that numpy modules are imported, can initialize limits
|
||||
core.getlimits._register_known_types()
|
||||
|
||||
__all__.extend(['__version__', 'show_config'])
|
||||
__all__.extend(core.__all__)
|
||||
__all__.extend(_mat.__all__)
|
||||
__all__.extend(lib.__all__)
|
||||
__all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
|
||||
|
||||
# Remove min and max from __all__ to avoid `from numpy import *` override
|
||||
# the builtins min/max. Temporary fix for 1.25.x/1.26.x, see gh-24229.
|
||||
__all__.remove('min')
|
||||
__all__.remove('max')
|
||||
__all__.remove('round')
|
||||
|
||||
# Remove one of the two occurrences of `issubdtype`, which is exposed as
|
||||
# both `numpy.core.issubdtype` and `numpy.lib.issubdtype`.
|
||||
__all__.remove('issubdtype')
|
||||
|
||||
# These are exported by np.core, but are replaced by the builtins below
|
||||
# remove them to ensure that we don't end up with `np.long == np.int_`,
|
||||
# which would be a breaking change.
|
||||
del long, unicode
|
||||
__all__.remove('long')
|
||||
__all__.remove('unicode')
|
||||
|
||||
# Remove things that are in the numpy.lib but not in the numpy namespace
|
||||
# Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
|
||||
# that prevents adding more things to the main namespace by accident.
|
||||
# The list below will grow until the `from .lib import *` fixme above is
|
||||
# taken care of
|
||||
__all__.remove('Arrayterator')
|
||||
del Arrayterator
|
||||
|
||||
# These names were removed in NumPy 1.20. For at least one release,
|
||||
# attempts to access these names in the numpy namespace will trigger
|
||||
# a warning, and calling the function will raise an exception.
|
||||
_financial_names = ['fv', 'ipmt', 'irr', 'mirr', 'nper', 'npv', 'pmt',
|
||||
'ppmt', 'pv', 'rate']
|
||||
__expired_functions__ = {
|
||||
name: (f'In accordance with NEP 32, the function {name} was removed '
|
||||
'from NumPy version 1.20. A replacement for this function '
|
||||
'is available in the numpy_financial library: '
|
||||
'https://pypi.org/project/numpy-financial')
|
||||
for name in _financial_names}
|
||||
|
||||
# Filter out Cython harmless warnings
|
||||
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||||
|
||||
# oldnumeric and numarray were removed in 1.9. In case some packages import
|
||||
# but do not use them, we define them here for backward compatibility.
|
||||
oldnumeric = 'removed'
|
||||
numarray = 'removed'
|
||||
|
||||
def __getattr__(attr):
|
||||
# Warn for expired attributes, and return a dummy function
|
||||
# that always raises an exception.
|
||||
import warnings
|
||||
import math
|
||||
try:
|
||||
msg = __expired_functions__[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||||
|
||||
def _expired(*args, **kwds):
|
||||
raise RuntimeError(msg)
|
||||
|
||||
return _expired
|
||||
|
||||
# Emit warnings for deprecated attributes
|
||||
try:
|
||||
val, msg = __deprecated_attrs__[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||||
return val
|
||||
|
||||
if attr in __future_scalars__:
|
||||
# And future warnings for those that will change, but also give
|
||||
# the AttributeError
|
||||
warnings.warn(
|
||||
f"In the future `np.{attr}` will be defined as the "
|
||||
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
|
||||
|
||||
if attr in __former_attrs__:
|
||||
raise AttributeError(__former_attrs__[attr])
|
||||
|
||||
if attr == 'testing':
|
||||
import numpy.testing as testing
|
||||
return testing
|
||||
elif attr == 'Tester':
|
||||
"Removed in NumPy 1.25.0"
|
||||
raise RuntimeError("Tester was removed in NumPy 1.25.")
|
||||
|
||||
raise AttributeError("module {!r} has no attribute "
|
||||
"{!r}".format(__name__, attr))
|
||||
|
||||
def __dir__():
|
||||
public_symbols = globals().keys() | {'testing'}
|
||||
public_symbols -= {
|
||||
"core", "matrixlib",
|
||||
# These were moved in 1.25 and may be deprecated eventually:
|
||||
"ModuleDeprecationWarning", "VisibleDeprecationWarning",
|
||||
"ComplexWarning", "TooHardError", "AxisError"
|
||||
}
|
||||
return list(public_symbols)
|
||||
|
||||
# Pytest testing
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
def _sanity_check():
|
||||
"""
|
||||
Quick sanity checks for common bugs caused by environment.
|
||||
There are some cases e.g. with wrong BLAS ABI that cause wrong
|
||||
results under specific runtime conditions that are not necessarily
|
||||
achieved during test suite runs, and it is useful to catch those early.
|
||||
|
||||
See https://github.com/numpy/numpy/issues/8577 and other
|
||||
similar bug reports.
|
||||
|
||||
"""
|
||||
try:
|
||||
x = ones(2, dtype=float32)
|
||||
if not abs(x.dot(x) - float32(2.0)) < 1e-5:
|
||||
raise AssertionError()
|
||||
except AssertionError:
|
||||
msg = ("The current Numpy installation ({!r}) fails to "
|
||||
"pass simple sanity checks. This can be caused for example "
|
||||
"by incorrect BLAS library being linked in, or by mixing "
|
||||
"package managers (pip, conda, apt, ...). Search closed "
|
||||
"numpy issues for similar problems.")
|
||||
raise RuntimeError(msg.format(__file__)) from None
|
||||
|
||||
_sanity_check()
|
||||
del _sanity_check
|
||||
|
||||
def _mac_os_check():
|
||||
"""
|
||||
Quick Sanity check for Mac OS look for accelerate build bugs.
|
||||
Testing numpy polyfit calls init_dgelsd(LAPACK)
|
||||
"""
|
||||
try:
|
||||
c = array([3., 2., 1.])
|
||||
x = linspace(0, 2, 5)
|
||||
y = polyval(c, x)
|
||||
_ = polyfit(x, y, 2, cov=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
if sys.platform == "darwin":
|
||||
from . import exceptions
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
_mac_os_check()
|
||||
# Throw runtime error, if the test failed Check for warning and error_message
|
||||
if len(w) > 0:
|
||||
for _wn in w:
|
||||
if _wn.category is exceptions.RankWarning:
|
||||
# Ignore other warnings, they may not be relevant (see gh-25433).
|
||||
error_message = f"{_wn.category.__name__}: {str(_wn.message)}"
|
||||
msg = (
|
||||
"Polyfit sanity test emitted a warning, most likely due "
|
||||
"to using a buggy Accelerate backend."
|
||||
"\nIf you compiled yourself, more information is available at:"
|
||||
"\nhttps://numpy.org/devdocs/building/index.html"
|
||||
"\nOtherwise report this to the vendor "
|
||||
"that provided NumPy.\n\n{}\n".format(error_message))
|
||||
raise RuntimeError(msg)
|
||||
del _wn
|
||||
del w
|
||||
del _mac_os_check
|
||||
|
||||
# We usually use madvise hugepages support, but on some old kernels it
|
||||
# is slow and thus better avoided.
|
||||
# Specifically kernel version 4.6 had a bug fix which probably fixed this:
|
||||
# https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
|
||||
import os
|
||||
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
|
||||
if sys.platform == "linux" and use_hugepage is None:
|
||||
# If there is an issue with parsing the kernel version,
|
||||
# set use_hugepages to 0. Usage of LooseVersion will handle
|
||||
# the kernel version parsing better, but avoided since it
|
||||
# will increase the import time. See: #16679 for related discussion.
|
||||
try:
|
||||
use_hugepage = 1
|
||||
kernel_version = os.uname().release.split(".")[:2]
|
||||
kernel_version = tuple(int(v) for v in kernel_version)
|
||||
if kernel_version < (4, 6):
|
||||
use_hugepage = 0
|
||||
except ValueError:
|
||||
use_hugepages = 0
|
||||
elif use_hugepage is None:
|
||||
# This is not Linux, so it should not matter, just enable anyway
|
||||
use_hugepage = 1
|
||||
else:
|
||||
use_hugepage = int(use_hugepage)
|
||||
|
||||
# Note that this will currently only make a difference on Linux
|
||||
core.multiarray._set_madvise_hugepage(use_hugepage)
|
||||
del use_hugepage
|
||||
|
||||
# Give a warning if NumPy is reloaded or imported on a sub-interpreter
|
||||
# We do this from python, since the C-module may not be reloaded and
|
||||
# it is tidier organized.
|
||||
core.multiarray._multiarray_umath._reload_guard()
|
||||
|
||||
# default to "weak" promotion for "NumPy 2".
|
||||
core._set_promotion_state(
|
||||
os.environ.get("NPY_PROMOTION_STATE",
|
||||
"weak" if _using_numpy2_behavior() else "legacy"))
|
||||
|
||||
# Tell PyInstaller where to find hook-numpy.py
|
||||
def _pyinstaller_hooks_dir():
|
||||
from pathlib import Path
|
||||
return [str(Path(__file__).with_name("_pyinstaller").resolve())]
|
||||
|
||||
# Remove symbols imported for internal use
|
||||
del os
|
||||
|
||||
|
||||
# Remove symbols imported for internal use
|
||||
del sys, warnings
|
||||
4422
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.pyi
Normal file
4422
AppDir/usr/lib/python3.12/site-packages/numpy/__init__.pyi
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,4 @@
|
|||
"""
|
||||
This private module only contains stubs for interoperability with
|
||||
NumPy 2.0 pickled arrays. It may not be used by the end user.
|
||||
"""
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
from numpy.core import _dtype
|
||||
|
||||
_globals = globals()
|
||||
|
||||
for item in _dtype.__dir__():
|
||||
_globals[item] = getattr(_dtype, item)
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
from numpy.core import _dtype_ctypes
|
||||
|
||||
_globals = globals()
|
||||
|
||||
for item in _dtype_ctypes.__dir__():
|
||||
_globals[item] = getattr(_dtype_ctypes, item)
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
from numpy.core import _internal
|
||||
|
||||
_globals = globals()
|
||||
|
||||
for item in _internal.__dir__():
|
||||
_globals[item] = getattr(_internal, item)
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
from numpy.core import _multiarray_umath
|
||||
|
||||
_globals = globals()
|
||||
|
||||
for item in _multiarray_umath.__dir__():
|
||||
_globals[item] = getattr(_multiarray_umath, item)
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
from numpy.core import multiarray
|
||||
|
||||
_globals = globals()
|
||||
|
||||
for item in multiarray.__dir__():
|
||||
_globals[item] = getattr(multiarray, item)
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
from numpy.core import umath
|
||||
|
||||
_globals = globals()
|
||||
|
||||
for item in umath.__dir__():
|
||||
_globals[item] = getattr(umath, item)
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
""" Distributor init file
|
||||
|
||||
Distributors: you can add custom code here to support particular distributions
|
||||
of numpy.
|
||||
|
||||
For example, this is a good place to put any BLAS/LAPACK initialization code.
|
||||
|
||||
The numpy standard source distribution will not put code in this file, so you
|
||||
can safely replace this file with your own version.
|
||||
"""
|
||||
|
||||
try:
|
||||
from . import _distributor_init_local
|
||||
except ImportError:
|
||||
pass
|
||||
95
AppDir/usr/lib/python3.12/site-packages/numpy/_globals.py
Normal file
95
AppDir/usr/lib/python3.12/site-packages/numpy/_globals.py
Normal file
|
|
@ -0,0 +1,95 @@
|
|||
"""
|
||||
Module defining global singleton classes.
|
||||
|
||||
This module raises a RuntimeError if an attempt to reload it is made. In that
|
||||
way the identities of the classes defined here are fixed and will remain so
|
||||
even if numpy itself is reloaded. In particular, a function like the following
|
||||
will still work correctly after numpy is reloaded::
|
||||
|
||||
def foo(arg=np._NoValue):
|
||||
if arg is np._NoValue:
|
||||
...
|
||||
|
||||
That was not the case when the singleton classes were defined in the numpy
|
||||
``__init__.py`` file. See gh-7844 for a discussion of the reload problem that
|
||||
motivated this module.
|
||||
|
||||
"""
|
||||
import enum
|
||||
|
||||
from ._utils import set_module as _set_module
|
||||
|
||||
__all__ = ['_NoValue', '_CopyMode']
|
||||
|
||||
|
||||
# Disallow reloading this module so as to preserve the identities of the
|
||||
# classes defined here.
|
||||
if '_is_loaded' in globals():
|
||||
raise RuntimeError('Reloading numpy._globals is not allowed')
|
||||
_is_loaded = True
|
||||
|
||||
|
||||
class _NoValueType:
|
||||
"""Special keyword value.
|
||||
|
||||
The instance of this class may be used as the default value assigned to a
|
||||
keyword if no other obvious default (e.g., `None`) is suitable,
|
||||
|
||||
Common reasons for using this keyword are:
|
||||
|
||||
- A new keyword is added to a function, and that function forwards its
|
||||
inputs to another function or method which can be defined outside of
|
||||
NumPy. For example, ``np.std(x)`` calls ``x.std``, so when a ``keepdims``
|
||||
keyword was added that could only be forwarded if the user explicitly
|
||||
specified ``keepdims``; downstream array libraries may not have added
|
||||
the same keyword, so adding ``x.std(..., keepdims=keepdims)``
|
||||
unconditionally could have broken previously working code.
|
||||
- A keyword is being deprecated, and a deprecation warning must only be
|
||||
emitted when the keyword is used.
|
||||
|
||||
"""
|
||||
__instance = None
|
||||
def __new__(cls):
|
||||
# ensure that only one instance exists
|
||||
if not cls.__instance:
|
||||
cls.__instance = super().__new__(cls)
|
||||
return cls.__instance
|
||||
|
||||
def __repr__(self):
|
||||
return "<no value>"
|
||||
|
||||
|
||||
_NoValue = _NoValueType()
|
||||
|
||||
|
||||
@_set_module("numpy")
|
||||
class _CopyMode(enum.Enum):
|
||||
"""
|
||||
An enumeration for the copy modes supported
|
||||
by numpy.copy() and numpy.array(). The following three modes are supported,
|
||||
|
||||
- ALWAYS: This means that a deep copy of the input
|
||||
array will always be taken.
|
||||
- IF_NEEDED: This means that a deep copy of the input
|
||||
array will be taken only if necessary.
|
||||
- NEVER: This means that the deep copy will never be taken.
|
||||
If a copy cannot be avoided then a `ValueError` will be
|
||||
raised.
|
||||
|
||||
Note that the buffer-protocol could in theory do copies. NumPy currently
|
||||
assumes an object exporting the buffer protocol will never do this.
|
||||
"""
|
||||
|
||||
ALWAYS = True
|
||||
IF_NEEDED = False
|
||||
NEVER = 2
|
||||
|
||||
def __bool__(self):
|
||||
# For backwards compatibility
|
||||
if self == _CopyMode.ALWAYS:
|
||||
return True
|
||||
|
||||
if self == _CopyMode.IF_NEEDED:
|
||||
return False
|
||||
|
||||
raise ValueError(f"{self} is neither True nor False.")
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
"""This hook should collect all binary files and any hidden modules that numpy
|
||||
needs.
|
||||
|
||||
Our (some-what inadequate) docs for writing PyInstaller hooks are kept here:
|
||||
https://pyinstaller.readthedocs.io/en/stable/hooks.html
|
||||
|
||||
"""
|
||||
from PyInstaller.compat import is_conda, is_pure_conda
|
||||
from PyInstaller.utils.hooks import collect_dynamic_libs, is_module_satisfies
|
||||
|
||||
# Collect all DLLs inside numpy's installation folder, dump them into built
|
||||
# app's root.
|
||||
binaries = collect_dynamic_libs("numpy", ".")
|
||||
|
||||
# If using Conda without any non-conda virtual environment manager:
|
||||
if is_pure_conda:
|
||||
# Assume running the NumPy from Conda-forge and collect it's DLLs from the
|
||||
# communal Conda bin directory. DLLs from NumPy's dependencies must also be
|
||||
# collected to capture MKL, OpenBlas, OpenMP, etc.
|
||||
from PyInstaller.utils.hooks import conda_support
|
||||
datas = conda_support.collect_dynamic_libs("numpy", dependencies=True)
|
||||
|
||||
# Submodules PyInstaller cannot detect. `_dtype_ctypes` is only imported
|
||||
# from C and `_multiarray_tests` is used in tests (which are not packed).
|
||||
hiddenimports = ['numpy.core._dtype_ctypes', 'numpy.core._multiarray_tests']
|
||||
|
||||
# Remove testing and building code and packages that are referenced throughout
|
||||
# NumPy but are not really dependencies.
|
||||
excludedimports = [
|
||||
"scipy",
|
||||
"pytest",
|
||||
"f2py",
|
||||
"setuptools",
|
||||
"numpy.f2py",
|
||||
"distutils",
|
||||
"numpy.distutils",
|
||||
]
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
"""A crude *bit of everything* smoke test to verify PyInstaller compatibility.
|
||||
|
||||
PyInstaller typically goes wrong by forgetting to package modules, extension
|
||||
modules or shared libraries. This script should aim to touch as many of those
|
||||
as possible in an attempt to trip a ModuleNotFoundError or a DLL load failure
|
||||
due to an uncollected resource. Missing resources are unlikely to lead to
|
||||
arithmetic errors so there's generally no need to verify any calculation's
|
||||
output - merely that it made it to the end OK. This script should not
|
||||
explicitly import any of numpy's submodules as that gives PyInstaller undue
|
||||
hints that those submodules exist and should be collected (accessing implicitly
|
||||
loaded submodules is OK).
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
a = np.arange(1., 10.).reshape((3, 3)) % 5
|
||||
np.linalg.det(a)
|
||||
a @ a
|
||||
a @ a.T
|
||||
np.linalg.inv(a)
|
||||
np.sin(np.exp(a))
|
||||
np.linalg.svd(a)
|
||||
np.linalg.eigh(a)
|
||||
|
||||
np.unique(np.random.randint(0, 10, 100))
|
||||
np.sort(np.random.uniform(0, 10, 100))
|
||||
|
||||
np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
|
||||
np.ma.masked_array(np.arange(10), np.random.rand(10) < .5).sum()
|
||||
np.polynomial.Legendre([7, 8, 9]).roots()
|
||||
|
||||
print("I made it!")
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
# PyInstaller has been very unproactive about replacing 'imp' with 'importlib'.
|
||||
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
|
||||
# It also leaks io.BytesIO()s.
|
||||
@pytest.mark.filterwarnings('ignore::ResourceWarning')
|
||||
@pytest.mark.parametrize("mode", ["--onedir", "--onefile"])
|
||||
@pytest.mark.slow
|
||||
def test_pyinstaller(mode, tmp_path):
|
||||
"""Compile and run pyinstaller-smoke.py using PyInstaller."""
|
||||
|
||||
pyinstaller_cli = pytest.importorskip("PyInstaller.__main__").run
|
||||
|
||||
source = Path(__file__).with_name("pyinstaller-smoke.py").resolve()
|
||||
args = [
|
||||
# Place all generated files in ``tmp_path``.
|
||||
'--workpath', str(tmp_path / "build"),
|
||||
'--distpath', str(tmp_path / "dist"),
|
||||
'--specpath', str(tmp_path),
|
||||
mode,
|
||||
str(source),
|
||||
]
|
||||
pyinstaller_cli(args)
|
||||
|
||||
if mode == "--onefile":
|
||||
exe = tmp_path / "dist" / source.stem
|
||||
else:
|
||||
exe = tmp_path / "dist" / source.stem / source.stem
|
||||
|
||||
p = subprocess.run([str(exe)], check=True, stdout=subprocess.PIPE)
|
||||
assert p.stdout.strip() == b"I made it!"
|
||||
207
AppDir/usr/lib/python3.12/site-packages/numpy/_pytesttester.py
Normal file
207
AppDir/usr/lib/python3.12/site-packages/numpy/_pytesttester.py
Normal file
|
|
@ -0,0 +1,207 @@
|
|||
"""
|
||||
Pytest test running.
|
||||
|
||||
This module implements the ``test()`` function for NumPy modules. The usual
|
||||
boiler plate for doing that is to put the following in the module
|
||||
``__init__.py`` file::
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
|
||||
Warnings filtering and other runtime settings should be dealt with in the
|
||||
``pytest.ini`` file in the numpy repo root. The behavior of the test depends on
|
||||
whether or not that file is found as follows:
|
||||
|
||||
* ``pytest.ini`` is present (develop mode)
|
||||
All warnings except those explicitly filtered out are raised as error.
|
||||
* ``pytest.ini`` is absent (release mode)
|
||||
DeprecationWarnings and PendingDeprecationWarnings are ignored, other
|
||||
warnings are passed through.
|
||||
|
||||
In practice, tests run from the numpy repo are run in develop mode. That
|
||||
includes the standard ``python runtests.py`` invocation.
|
||||
|
||||
This module is imported by every numpy subpackage, so lies at the top level to
|
||||
simplify circular import issues. For the same reason, it contains no numpy
|
||||
imports at module scope, instead importing numpy within function calls.
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
|
||||
__all__ = ['PytestTester']
|
||||
|
||||
|
||||
def _show_numpy_info():
|
||||
import numpy as np
|
||||
|
||||
print("NumPy version %s" % np.__version__)
|
||||
relaxed_strides = np.ones((10, 1), order="C").flags.f_contiguous
|
||||
print("NumPy relaxed strides checking option:", relaxed_strides)
|
||||
info = np.lib.utils._opt_info()
|
||||
print("NumPy CPU features: ", (info if info else 'nothing enabled'))
|
||||
|
||||
|
||||
class PytestTester:
|
||||
"""
|
||||
Pytest test runner.
|
||||
|
||||
A test function is typically added to a package's __init__.py like so::
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__).test
|
||||
del PytestTester
|
||||
|
||||
Calling this test function finds and runs all tests associated with the
|
||||
module and all its sub-modules.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
module_name : str
|
||||
Full path to the package to test.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
module_name : module name
|
||||
The name of the module to test.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Unlike the previous ``nose``-based implementation, this class is not
|
||||
publicly exposed as it performs some ``numpy``-specific warning
|
||||
suppression.
|
||||
|
||||
"""
|
||||
def __init__(self, module_name):
|
||||
self.module_name = module_name
|
||||
|
||||
def __call__(self, label='fast', verbose=1, extra_argv=None,
|
||||
doctests=False, coverage=False, durations=-1, tests=None):
|
||||
"""
|
||||
Run tests for module using pytest.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : {'fast', 'full'}, optional
|
||||
Identifies the tests to run. When set to 'fast', tests decorated
|
||||
with `pytest.mark.slow` are skipped, when 'full', the slow marker
|
||||
is ignored.
|
||||
verbose : int, optional
|
||||
Verbosity value for test outputs, in the range 1-3. Default is 1.
|
||||
extra_argv : list, optional
|
||||
List with any extra arguments to pass to pytests.
|
||||
doctests : bool, optional
|
||||
.. note:: Not supported
|
||||
coverage : bool, optional
|
||||
If True, report coverage of NumPy code. Default is False.
|
||||
Requires installation of (pip) pytest-cov.
|
||||
durations : int, optional
|
||||
If < 0, do nothing, If 0, report time of all tests, if > 0,
|
||||
report the time of the slowest `timer` tests. Default is -1.
|
||||
tests : test or list of tests
|
||||
Tests to be executed with pytest '--pyargs'
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : bool
|
||||
Return True on success, false otherwise.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Each NumPy module exposes `test` in its namespace to run all tests for
|
||||
it. For example, to run all tests for numpy.lib:
|
||||
|
||||
>>> np.lib.test() #doctest: +SKIP
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> result = np.lib.test() #doctest: +SKIP
|
||||
...
|
||||
1023 passed, 2 skipped, 6 deselected, 1 xfailed in 10.39 seconds
|
||||
>>> result
|
||||
True
|
||||
|
||||
"""
|
||||
import pytest
|
||||
import warnings
|
||||
|
||||
module = sys.modules[self.module_name]
|
||||
module_path = os.path.abspath(module.__path__[0])
|
||||
|
||||
# setup the pytest arguments
|
||||
pytest_args = ["-l"]
|
||||
|
||||
# offset verbosity. The "-q" cancels a "-v".
|
||||
pytest_args += ["-q"]
|
||||
|
||||
if sys.version_info < (3, 12):
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("always")
|
||||
# Filter out distutils cpu warnings (could be localized to
|
||||
# distutils tests). ASV has problems with top level import,
|
||||
# so fetch module for suppression here.
|
||||
from numpy.distutils import cpuinfo
|
||||
|
||||
with warnings.catch_warnings(record=True):
|
||||
# Ignore the warning from importing the array_api submodule. This
|
||||
# warning is done on import, so it would break pytest collection,
|
||||
# but importing it early here prevents the warning from being
|
||||
# issued when it imported again.
|
||||
import numpy.array_api
|
||||
|
||||
# Filter out annoying import messages. Want these in both develop and
|
||||
# release mode.
|
||||
pytest_args += [
|
||||
"-W ignore:Not importing directory",
|
||||
"-W ignore:numpy.dtype size changed",
|
||||
"-W ignore:numpy.ufunc size changed",
|
||||
"-W ignore::UserWarning:cpuinfo",
|
||||
]
|
||||
|
||||
# When testing matrices, ignore their PendingDeprecationWarnings
|
||||
pytest_args += [
|
||||
"-W ignore:the matrix subclass is not",
|
||||
"-W ignore:Importing from numpy.matlib is",
|
||||
]
|
||||
|
||||
if doctests:
|
||||
pytest_args += ["--doctest-modules"]
|
||||
|
||||
if extra_argv:
|
||||
pytest_args += list(extra_argv)
|
||||
|
||||
if verbose > 1:
|
||||
pytest_args += ["-" + "v"*(verbose - 1)]
|
||||
|
||||
if coverage:
|
||||
pytest_args += ["--cov=" + module_path]
|
||||
|
||||
if label == "fast":
|
||||
# not importing at the top level to avoid circular import of module
|
||||
from numpy.testing import IS_PYPY
|
||||
if IS_PYPY:
|
||||
pytest_args += ["-m", "not slow and not slow_pypy"]
|
||||
else:
|
||||
pytest_args += ["-m", "not slow"]
|
||||
|
||||
elif label != "full":
|
||||
pytest_args += ["-m", label]
|
||||
|
||||
if durations >= 0:
|
||||
pytest_args += ["--durations=%s" % durations]
|
||||
|
||||
if tests is None:
|
||||
tests = [self.module_name]
|
||||
|
||||
pytest_args += ["--pyargs"] + list(tests)
|
||||
|
||||
# run tests.
|
||||
_show_numpy_info()
|
||||
|
||||
try:
|
||||
code = pytest.main(pytest_args)
|
||||
except SystemExit as exc:
|
||||
code = exc.code
|
||||
|
||||
return code == 0
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
from collections.abc import Iterable
|
||||
from typing import Literal as L
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
class PytestTester:
|
||||
module_name: str
|
||||
def __init__(self, module_name: str) -> None: ...
|
||||
def __call__(
|
||||
self,
|
||||
label: L["fast", "full"] = ...,
|
||||
verbose: int = ...,
|
||||
extra_argv: None | Iterable[str] = ...,
|
||||
doctests: L[False] = ...,
|
||||
coverage: bool = ...,
|
||||
durations: int = ...,
|
||||
tests: None | Iterable[str] = ...,
|
||||
) -> bool: ...
|
||||
|
|
@ -0,0 +1,221 @@
|
|||
"""Private counterpart of ``numpy.typing``."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from .. import ufunc
|
||||
from .._utils import set_module
|
||||
from typing import TYPE_CHECKING, final
|
||||
|
||||
|
||||
@final # Disallow the creation of arbitrary `NBitBase` subclasses
|
||||
@set_module("numpy.typing")
|
||||
class NBitBase:
|
||||
"""
|
||||
A type representing `numpy.number` precision during static type checking.
|
||||
|
||||
Used exclusively for the purpose static type checking, `NBitBase`
|
||||
represents the base of a hierarchical set of subclasses.
|
||||
Each subsequent subclass is herein used for representing a lower level
|
||||
of precision, *e.g.* ``64Bit > 32Bit > 16Bit``.
|
||||
|
||||
.. versionadded:: 1.20
|
||||
|
||||
Examples
|
||||
--------
|
||||
Below is a typical usage example: `NBitBase` is herein used for annotating
|
||||
a function that takes a float and integer of arbitrary precision
|
||||
as arguments and returns a new float of whichever precision is largest
|
||||
(*e.g.* ``np.float16 + np.int64 -> np.float64``).
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> from __future__ import annotations
|
||||
>>> from typing import TypeVar, TYPE_CHECKING
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> T1 = TypeVar("T1", bound=npt.NBitBase)
|
||||
>>> T2 = TypeVar("T2", bound=npt.NBitBase)
|
||||
|
||||
>>> def add(a: np.floating[T1], b: np.integer[T2]) -> np.floating[T1 | T2]:
|
||||
... return a + b
|
||||
|
||||
>>> a = np.float16()
|
||||
>>> b = np.int64()
|
||||
>>> out = add(a, b)
|
||||
|
||||
>>> if TYPE_CHECKING:
|
||||
... reveal_locals()
|
||||
... # note: Revealed local types are:
|
||||
... # note: a: numpy.floating[numpy.typing._16Bit*]
|
||||
... # note: b: numpy.signedinteger[numpy.typing._64Bit*]
|
||||
... # note: out: numpy.floating[numpy.typing._64Bit*]
|
||||
|
||||
"""
|
||||
|
||||
def __init_subclass__(cls) -> None:
|
||||
allowed_names = {
|
||||
"NBitBase", "_256Bit", "_128Bit", "_96Bit", "_80Bit",
|
||||
"_64Bit", "_32Bit", "_16Bit", "_8Bit",
|
||||
}
|
||||
if cls.__name__ not in allowed_names:
|
||||
raise TypeError('cannot inherit from final class "NBitBase"')
|
||||
super().__init_subclass__()
|
||||
|
||||
|
||||
# Silence errors about subclassing a `@final`-decorated class
|
||||
class _256Bit(NBitBase): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _128Bit(_256Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _96Bit(_128Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _80Bit(_96Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _64Bit(_80Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _32Bit(_64Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _16Bit(_32Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _8Bit(_16Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
|
||||
from ._nested_sequence import (
|
||||
_NestedSequence as _NestedSequence,
|
||||
)
|
||||
from ._nbit import (
|
||||
_NBitByte as _NBitByte,
|
||||
_NBitShort as _NBitShort,
|
||||
_NBitIntC as _NBitIntC,
|
||||
_NBitIntP as _NBitIntP,
|
||||
_NBitInt as _NBitInt,
|
||||
_NBitLongLong as _NBitLongLong,
|
||||
_NBitHalf as _NBitHalf,
|
||||
_NBitSingle as _NBitSingle,
|
||||
_NBitDouble as _NBitDouble,
|
||||
_NBitLongDouble as _NBitLongDouble,
|
||||
)
|
||||
from ._char_codes import (
|
||||
_BoolCodes as _BoolCodes,
|
||||
_UInt8Codes as _UInt8Codes,
|
||||
_UInt16Codes as _UInt16Codes,
|
||||
_UInt32Codes as _UInt32Codes,
|
||||
_UInt64Codes as _UInt64Codes,
|
||||
_Int8Codes as _Int8Codes,
|
||||
_Int16Codes as _Int16Codes,
|
||||
_Int32Codes as _Int32Codes,
|
||||
_Int64Codes as _Int64Codes,
|
||||
_Float16Codes as _Float16Codes,
|
||||
_Float32Codes as _Float32Codes,
|
||||
_Float64Codes as _Float64Codes,
|
||||
_Complex64Codes as _Complex64Codes,
|
||||
_Complex128Codes as _Complex128Codes,
|
||||
_ByteCodes as _ByteCodes,
|
||||
_ShortCodes as _ShortCodes,
|
||||
_IntCCodes as _IntCCodes,
|
||||
_IntPCodes as _IntPCodes,
|
||||
_IntCodes as _IntCodes,
|
||||
_LongLongCodes as _LongLongCodes,
|
||||
_UByteCodes as _UByteCodes,
|
||||
_UShortCodes as _UShortCodes,
|
||||
_UIntCCodes as _UIntCCodes,
|
||||
_UIntPCodes as _UIntPCodes,
|
||||
_UIntCodes as _UIntCodes,
|
||||
_ULongLongCodes as _ULongLongCodes,
|
||||
_HalfCodes as _HalfCodes,
|
||||
_SingleCodes as _SingleCodes,
|
||||
_DoubleCodes as _DoubleCodes,
|
||||
_LongDoubleCodes as _LongDoubleCodes,
|
||||
_CSingleCodes as _CSingleCodes,
|
||||
_CDoubleCodes as _CDoubleCodes,
|
||||
_CLongDoubleCodes as _CLongDoubleCodes,
|
||||
_DT64Codes as _DT64Codes,
|
||||
_TD64Codes as _TD64Codes,
|
||||
_StrCodes as _StrCodes,
|
||||
_BytesCodes as _BytesCodes,
|
||||
_VoidCodes as _VoidCodes,
|
||||
_ObjectCodes as _ObjectCodes,
|
||||
)
|
||||
from ._scalars import (
|
||||
_CharLike_co as _CharLike_co,
|
||||
_BoolLike_co as _BoolLike_co,
|
||||
_UIntLike_co as _UIntLike_co,
|
||||
_IntLike_co as _IntLike_co,
|
||||
_FloatLike_co as _FloatLike_co,
|
||||
_ComplexLike_co as _ComplexLike_co,
|
||||
_TD64Like_co as _TD64Like_co,
|
||||
_NumberLike_co as _NumberLike_co,
|
||||
_ScalarLike_co as _ScalarLike_co,
|
||||
_VoidLike_co as _VoidLike_co,
|
||||
)
|
||||
from ._shape import (
|
||||
_Shape as _Shape,
|
||||
_ShapeLike as _ShapeLike,
|
||||
)
|
||||
from ._dtype_like import (
|
||||
DTypeLike as DTypeLike,
|
||||
_DTypeLike as _DTypeLike,
|
||||
_SupportsDType as _SupportsDType,
|
||||
_VoidDTypeLike as _VoidDTypeLike,
|
||||
_DTypeLikeBool as _DTypeLikeBool,
|
||||
_DTypeLikeUInt as _DTypeLikeUInt,
|
||||
_DTypeLikeInt as _DTypeLikeInt,
|
||||
_DTypeLikeFloat as _DTypeLikeFloat,
|
||||
_DTypeLikeComplex as _DTypeLikeComplex,
|
||||
_DTypeLikeTD64 as _DTypeLikeTD64,
|
||||
_DTypeLikeDT64 as _DTypeLikeDT64,
|
||||
_DTypeLikeObject as _DTypeLikeObject,
|
||||
_DTypeLikeVoid as _DTypeLikeVoid,
|
||||
_DTypeLikeStr as _DTypeLikeStr,
|
||||
_DTypeLikeBytes as _DTypeLikeBytes,
|
||||
_DTypeLikeComplex_co as _DTypeLikeComplex_co,
|
||||
)
|
||||
from ._array_like import (
|
||||
NDArray as NDArray,
|
||||
ArrayLike as ArrayLike,
|
||||
_ArrayLike as _ArrayLike,
|
||||
_FiniteNestedSequence as _FiniteNestedSequence,
|
||||
_SupportsArray as _SupportsArray,
|
||||
_SupportsArrayFunc as _SupportsArrayFunc,
|
||||
_ArrayLikeInt as _ArrayLikeInt,
|
||||
_ArrayLikeBool_co as _ArrayLikeBool_co,
|
||||
_ArrayLikeUInt_co as _ArrayLikeUInt_co,
|
||||
_ArrayLikeInt_co as _ArrayLikeInt_co,
|
||||
_ArrayLikeFloat_co as _ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co as _ArrayLikeComplex_co,
|
||||
_ArrayLikeNumber_co as _ArrayLikeNumber_co,
|
||||
_ArrayLikeTD64_co as _ArrayLikeTD64_co,
|
||||
_ArrayLikeDT64_co as _ArrayLikeDT64_co,
|
||||
_ArrayLikeObject_co as _ArrayLikeObject_co,
|
||||
_ArrayLikeVoid_co as _ArrayLikeVoid_co,
|
||||
_ArrayLikeStr_co as _ArrayLikeStr_co,
|
||||
_ArrayLikeBytes_co as _ArrayLikeBytes_co,
|
||||
_ArrayLikeUnknown as _ArrayLikeUnknown,
|
||||
_UnknownType as _UnknownType,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._ufunc import (
|
||||
_UFunc_Nin1_Nout1 as _UFunc_Nin1_Nout1,
|
||||
_UFunc_Nin2_Nout1 as _UFunc_Nin2_Nout1,
|
||||
_UFunc_Nin1_Nout2 as _UFunc_Nin1_Nout2,
|
||||
_UFunc_Nin2_Nout2 as _UFunc_Nin2_Nout2,
|
||||
_GUFunc_Nin2_Nout1 as _GUFunc_Nin2_Nout1,
|
||||
)
|
||||
else:
|
||||
# Declare the (type-check-only) ufunc subclasses as ufunc aliases during
|
||||
# runtime; this helps autocompletion tools such as Jedi (numpy/numpy#19834)
|
||||
_UFunc_Nin1_Nout1 = ufunc
|
||||
_UFunc_Nin2_Nout1 = ufunc
|
||||
_UFunc_Nin1_Nout2 = ufunc
|
||||
_UFunc_Nin2_Nout2 = ufunc
|
||||
_GUFunc_Nin2_Nout1 = ufunc
|
||||
|
|
@ -0,0 +1,152 @@
|
|||
"""A module for creating docstrings for sphinx ``data`` domains."""
|
||||
|
||||
import re
|
||||
import textwrap
|
||||
|
||||
from ._array_like import NDArray
|
||||
|
||||
_docstrings_list = []
|
||||
|
||||
|
||||
def add_newdoc(name: str, value: str, doc: str) -> None:
|
||||
"""Append ``_docstrings_list`` with a docstring for `name`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The name of the object.
|
||||
value : str
|
||||
A string-representation of the object.
|
||||
doc : str
|
||||
The docstring of the object.
|
||||
|
||||
"""
|
||||
_docstrings_list.append((name, value, doc))
|
||||
|
||||
|
||||
def _parse_docstrings() -> str:
|
||||
"""Convert all docstrings in ``_docstrings_list`` into a single
|
||||
sphinx-legible text block.
|
||||
|
||||
"""
|
||||
type_list_ret = []
|
||||
for name, value, doc in _docstrings_list:
|
||||
s = textwrap.dedent(doc).replace("\n", "\n ")
|
||||
|
||||
# Replace sections by rubrics
|
||||
lines = s.split("\n")
|
||||
new_lines = []
|
||||
indent = ""
|
||||
for line in lines:
|
||||
m = re.match(r'^(\s+)[-=]+\s*$', line)
|
||||
if m and new_lines:
|
||||
prev = textwrap.dedent(new_lines.pop())
|
||||
if prev == "Examples":
|
||||
indent = ""
|
||||
new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
|
||||
else:
|
||||
indent = 4 * " "
|
||||
new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
|
||||
new_lines.append("")
|
||||
else:
|
||||
new_lines.append(f"{indent}{line}")
|
||||
|
||||
s = "\n".join(new_lines)
|
||||
s_block = f""".. data:: {name}\n :value: {value}\n {s}"""
|
||||
type_list_ret.append(s_block)
|
||||
return "\n".join(type_list_ret)
|
||||
|
||||
|
||||
add_newdoc('ArrayLike', 'typing.Union[...]',
|
||||
"""
|
||||
A `~typing.Union` representing objects that can be coerced
|
||||
into an `~numpy.ndarray`.
|
||||
|
||||
Among others this includes the likes of:
|
||||
|
||||
* Scalars.
|
||||
* (Nested) sequences.
|
||||
* Objects implementing the `~class.__array__` protocol.
|
||||
|
||||
.. versionadded:: 1.20
|
||||
|
||||
See Also
|
||||
--------
|
||||
:term:`array_like`:
|
||||
Any scalar or sequence that can be interpreted as an ndarray.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
|
||||
... return np.array(a)
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('DTypeLike', 'typing.Union[...]',
|
||||
"""
|
||||
A `~typing.Union` representing objects that can be coerced
|
||||
into a `~numpy.dtype`.
|
||||
|
||||
Among others this includes the likes of:
|
||||
|
||||
* :class:`type` objects.
|
||||
* Character codes or the names of :class:`type` objects.
|
||||
* Objects with the ``.dtype`` attribute.
|
||||
|
||||
.. versionadded:: 1.20
|
||||
|
||||
See Also
|
||||
--------
|
||||
:ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
|
||||
A comprehensive overview of all objects that can be coerced
|
||||
into data types.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
|
||||
... return np.dtype(d)
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('NDArray', repr(NDArray),
|
||||
"""
|
||||
A :term:`generic <generic type>` version of
|
||||
`np.ndarray[Any, np.dtype[+ScalarType]] <numpy.ndarray>`.
|
||||
|
||||
Can be used during runtime for typing arrays with a given dtype
|
||||
and unspecified shape.
|
||||
|
||||
.. versionadded:: 1.21
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> print(npt.NDArray)
|
||||
numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]
|
||||
|
||||
>>> print(npt.NDArray[np.float64])
|
||||
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
|
||||
|
||||
>>> NDArrayInt = npt.NDArray[np.int_]
|
||||
>>> a: NDArrayInt = np.arange(10)
|
||||
|
||||
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
|
||||
... return np.array(a)
|
||||
|
||||
""")
|
||||
|
||||
_docstrings = _parse_docstrings()
|
||||
|
|
@ -0,0 +1,167 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from collections.abc import Collection, Callable, Sequence
|
||||
from typing import Any, Protocol, Union, TypeVar, runtime_checkable
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
generic,
|
||||
bool_,
|
||||
unsignedinteger,
|
||||
integer,
|
||||
floating,
|
||||
complexfloating,
|
||||
number,
|
||||
timedelta64,
|
||||
datetime64,
|
||||
object_,
|
||||
void,
|
||||
str_,
|
||||
bytes_,
|
||||
)
|
||||
from ._nested_sequence import _NestedSequence
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_ScalarType = TypeVar("_ScalarType", bound=generic)
|
||||
_ScalarType_co = TypeVar("_ScalarType_co", bound=generic, covariant=True)
|
||||
_DType = TypeVar("_DType", bound=dtype[Any])
|
||||
_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
|
||||
|
||||
NDArray = ndarray[Any, dtype[_ScalarType_co]]
|
||||
|
||||
# The `_SupportsArray` protocol only cares about the default dtype
|
||||
# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned
|
||||
# array.
|
||||
# Concrete implementations of the protocol are responsible for adding
|
||||
# any and all remaining overloads
|
||||
@runtime_checkable
|
||||
class _SupportsArray(Protocol[_DType_co]):
|
||||
def __array__(self) -> ndarray[Any, _DType_co]: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class _SupportsArrayFunc(Protocol):
|
||||
"""A protocol class representing `~class.__array_function__`."""
|
||||
def __array_function__(
|
||||
self,
|
||||
func: Callable[..., Any],
|
||||
types: Collection[type[Any]],
|
||||
args: tuple[Any, ...],
|
||||
kwargs: dict[str, Any],
|
||||
) -> object: ...
|
||||
|
||||
|
||||
# TODO: Wait until mypy supports recursive objects in combination with typevars
|
||||
_FiniteNestedSequence = Union[
|
||||
_T,
|
||||
Sequence[_T],
|
||||
Sequence[Sequence[_T]],
|
||||
Sequence[Sequence[Sequence[_T]]],
|
||||
Sequence[Sequence[Sequence[Sequence[_T]]]],
|
||||
]
|
||||
|
||||
# A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic`
|
||||
_ArrayLike = Union[
|
||||
_SupportsArray[dtype[_ScalarType]],
|
||||
_NestedSequence[_SupportsArray[dtype[_ScalarType]]],
|
||||
]
|
||||
|
||||
# A union representing array-like objects; consists of two typevars:
|
||||
# One representing types that can be parametrized w.r.t. `np.dtype`
|
||||
# and another one for the rest
|
||||
_DualArrayLike = Union[
|
||||
_SupportsArray[_DType],
|
||||
_NestedSequence[_SupportsArray[_DType]],
|
||||
_T,
|
||||
_NestedSequence[_T],
|
||||
]
|
||||
|
||||
if sys.version_info >= (3, 12):
|
||||
from collections.abc import Buffer
|
||||
|
||||
ArrayLike = Buffer | _DualArrayLike[
|
||||
dtype[Any],
|
||||
Union[bool, int, float, complex, str, bytes],
|
||||
]
|
||||
else:
|
||||
ArrayLike = _DualArrayLike[
|
||||
dtype[Any],
|
||||
Union[bool, int, float, complex, str, bytes],
|
||||
]
|
||||
|
||||
# `ArrayLike<X>_co`: array-like objects that can be coerced into `X`
|
||||
# given the casting rules `same_kind`
|
||||
_ArrayLikeBool_co = _DualArrayLike[
|
||||
dtype[bool_],
|
||||
bool,
|
||||
]
|
||||
_ArrayLikeUInt_co = _DualArrayLike[
|
||||
dtype[Union[bool_, unsignedinteger[Any]]],
|
||||
bool,
|
||||
]
|
||||
_ArrayLikeInt_co = _DualArrayLike[
|
||||
dtype[Union[bool_, integer[Any]]],
|
||||
Union[bool, int],
|
||||
]
|
||||
_ArrayLikeFloat_co = _DualArrayLike[
|
||||
dtype[Union[bool_, integer[Any], floating[Any]]],
|
||||
Union[bool, int, float],
|
||||
]
|
||||
_ArrayLikeComplex_co = _DualArrayLike[
|
||||
dtype[Union[
|
||||
bool_,
|
||||
integer[Any],
|
||||
floating[Any],
|
||||
complexfloating[Any, Any],
|
||||
]],
|
||||
Union[bool, int, float, complex],
|
||||
]
|
||||
_ArrayLikeNumber_co = _DualArrayLike[
|
||||
dtype[Union[bool_, number[Any]]],
|
||||
Union[bool, int, float, complex],
|
||||
]
|
||||
_ArrayLikeTD64_co = _DualArrayLike[
|
||||
dtype[Union[bool_, integer[Any], timedelta64]],
|
||||
Union[bool, int],
|
||||
]
|
||||
_ArrayLikeDT64_co = Union[
|
||||
_SupportsArray[dtype[datetime64]],
|
||||
_NestedSequence[_SupportsArray[dtype[datetime64]]],
|
||||
]
|
||||
_ArrayLikeObject_co = Union[
|
||||
_SupportsArray[dtype[object_]],
|
||||
_NestedSequence[_SupportsArray[dtype[object_]]],
|
||||
]
|
||||
|
||||
_ArrayLikeVoid_co = Union[
|
||||
_SupportsArray[dtype[void]],
|
||||
_NestedSequence[_SupportsArray[dtype[void]]],
|
||||
]
|
||||
_ArrayLikeStr_co = _DualArrayLike[
|
||||
dtype[str_],
|
||||
str,
|
||||
]
|
||||
_ArrayLikeBytes_co = _DualArrayLike[
|
||||
dtype[bytes_],
|
||||
bytes,
|
||||
]
|
||||
|
||||
_ArrayLikeInt = _DualArrayLike[
|
||||
dtype[integer[Any]],
|
||||
int,
|
||||
]
|
||||
|
||||
# Extra ArrayLike type so that pyright can deal with NDArray[Any]
|
||||
# Used as the first overload, should only match NDArray[Any],
|
||||
# not any actual types.
|
||||
# https://github.com/numpy/numpy/pull/22193
|
||||
class _UnknownType:
|
||||
...
|
||||
|
||||
|
||||
_ArrayLikeUnknown = _DualArrayLike[
|
||||
dtype[_UnknownType],
|
||||
_UnknownType,
|
||||
]
|
||||
|
|
@ -0,0 +1,338 @@
|
|||
"""
|
||||
A module with various ``typing.Protocol`` subclasses that implement
|
||||
the ``__call__`` magic method.
|
||||
|
||||
See the `Mypy documentation`_ on protocols for more details.
|
||||
|
||||
.. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TypeVar,
|
||||
overload,
|
||||
Any,
|
||||
NoReturn,
|
||||
Protocol,
|
||||
)
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
generic,
|
||||
bool_,
|
||||
timedelta64,
|
||||
number,
|
||||
integer,
|
||||
unsignedinteger,
|
||||
signedinteger,
|
||||
int8,
|
||||
int_,
|
||||
floating,
|
||||
float64,
|
||||
complexfloating,
|
||||
complex128,
|
||||
)
|
||||
from ._nbit import _NBitInt, _NBitDouble
|
||||
from ._scalars import (
|
||||
_BoolLike_co,
|
||||
_IntLike_co,
|
||||
_FloatLike_co,
|
||||
_NumberLike_co,
|
||||
)
|
||||
from . import NBitBase
|
||||
from ._array_like import NDArray
|
||||
from ._nested_sequence import _NestedSequence
|
||||
|
||||
_T1 = TypeVar("_T1")
|
||||
_T2 = TypeVar("_T2")
|
||||
_T1_contra = TypeVar("_T1_contra", contravariant=True)
|
||||
_T2_contra = TypeVar("_T2_contra", contravariant=True)
|
||||
_2Tuple = tuple[_T1, _T1]
|
||||
|
||||
_NBit1 = TypeVar("_NBit1", bound=NBitBase)
|
||||
_NBit2 = TypeVar("_NBit2", bound=NBitBase)
|
||||
|
||||
_IntType = TypeVar("_IntType", bound=integer)
|
||||
_FloatType = TypeVar("_FloatType", bound=floating)
|
||||
_NumberType = TypeVar("_NumberType", bound=number)
|
||||
_NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number)
|
||||
_GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic)
|
||||
|
||||
class _BoolOp(Protocol[_GenericType_co]):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: complex, /) -> complex128: ...
|
||||
@overload
|
||||
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
||||
|
||||
class _BoolBitOp(Protocol[_GenericType_co]):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: _IntType, /) -> _IntType: ...
|
||||
|
||||
class _BoolSub(Protocol):
|
||||
# Note that `other: bool_` is absent here
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> NoReturn: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: complex, /) -> complex128: ...
|
||||
@overload
|
||||
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
||||
|
||||
class _BoolTrueDiv(Protocol):
|
||||
@overload
|
||||
def __call__(self, other: float | _IntLike_co, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: complex, /) -> complex128: ...
|
||||
@overload
|
||||
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
||||
|
||||
class _BoolMod(Protocol):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> int8: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: _IntType, /) -> _IntType: ...
|
||||
@overload
|
||||
def __call__(self, other: _FloatType, /) -> _FloatType: ...
|
||||
|
||||
class _BoolDivMod(Protocol):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> _2Tuple[int8]: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> _2Tuple[int_]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(self, other: _IntType, /) -> _2Tuple[_IntType]: ...
|
||||
@overload
|
||||
def __call__(self, other: _FloatType, /) -> _2Tuple[_FloatType]: ...
|
||||
|
||||
class _TD64Div(Protocol[_NumberType_co]):
|
||||
@overload
|
||||
def __call__(self, other: timedelta64, /) -> _NumberType_co: ...
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> NoReturn: ...
|
||||
@overload
|
||||
def __call__(self, other: _FloatLike_co, /) -> timedelta64: ...
|
||||
|
||||
class _IntTrueDiv(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(self, other: integer[_NBit2], /) -> floating[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntOp(Protocol[_NBit1]):
|
||||
# NOTE: `uint64 + signedinteger -> float64`
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: int | signedinteger[Any], /
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntBitOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[Any]: ...
|
||||
@overload
|
||||
def __call__(self, other: signedinteger[Any], /) -> signedinteger[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: int | signedinteger[Any], /
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntDivMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: int | signedinteger[Any], /
|
||||
) -> _2Tuple[Any]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> _2Tuple[unsignedinteger[_NBit1 | _NBit2]]: ...
|
||||
|
||||
class _SignedIntOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> signedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _SignedIntBitOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> signedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _SignedIntMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> signedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _SignedIntDivMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> _2Tuple[signedinteger[_NBit1 | _NBitInt]]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> _2Tuple[signedinteger[_NBit1 | _NBit2]]: ...
|
||||
|
||||
class _FloatOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: integer[_NBit2] | floating[_NBit2], /
|
||||
) -> floating[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _FloatMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: integer[_NBit2] | floating[_NBit2], /
|
||||
) -> floating[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _FloatDivMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> _2Tuple[floating[_NBit1]]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> _2Tuple[floating[_NBit1 | _NBitInt]]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: integer[_NBit2] | floating[_NBit2], /
|
||||
) -> _2Tuple[floating[_NBit1 | _NBit2]]: ...
|
||||
|
||||
class _ComplexOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> complexfloating[_NBit1, _NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> complexfloating[_NBit1 | _NBitInt, _NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
other: (
|
||||
integer[_NBit2]
|
||||
| floating[_NBit2]
|
||||
| complexfloating[_NBit2, _NBit2]
|
||||
), /,
|
||||
) -> complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]: ...
|
||||
|
||||
class _NumberOp(Protocol):
|
||||
def __call__(self, other: _NumberLike_co, /) -> Any: ...
|
||||
|
||||
class _SupportsLT(Protocol):
|
||||
def __lt__(self, other: Any, /) -> object: ...
|
||||
|
||||
class _SupportsGT(Protocol):
|
||||
def __gt__(self, other: Any, /) -> object: ...
|
||||
|
||||
class _ComparisonOp(Protocol[_T1_contra, _T2_contra]):
|
||||
@overload
|
||||
def __call__(self, other: _T1_contra, /) -> bool_: ...
|
||||
@overload
|
||||
def __call__(self, other: _T2_contra, /) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
other: _SupportsLT | _SupportsGT | _NestedSequence[_SupportsLT | _SupportsGT],
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
|
@ -0,0 +1,111 @@
|
|||
from typing import Literal
|
||||
|
||||
_BoolCodes = Literal["?", "=?", "<?", ">?", "bool", "bool_", "bool8"]
|
||||
|
||||
_UInt8Codes = Literal["uint8", "u1", "=u1", "<u1", ">u1"]
|
||||
_UInt16Codes = Literal["uint16", "u2", "=u2", "<u2", ">u2"]
|
||||
_UInt32Codes = Literal["uint32", "u4", "=u4", "<u4", ">u4"]
|
||||
_UInt64Codes = Literal["uint64", "u8", "=u8", "<u8", ">u8"]
|
||||
|
||||
_Int8Codes = Literal["int8", "i1", "=i1", "<i1", ">i1"]
|
||||
_Int16Codes = Literal["int16", "i2", "=i2", "<i2", ">i2"]
|
||||
_Int32Codes = Literal["int32", "i4", "=i4", "<i4", ">i4"]
|
||||
_Int64Codes = Literal["int64", "i8", "=i8", "<i8", ">i8"]
|
||||
|
||||
_Float16Codes = Literal["float16", "f2", "=f2", "<f2", ">f2"]
|
||||
_Float32Codes = Literal["float32", "f4", "=f4", "<f4", ">f4"]
|
||||
_Float64Codes = Literal["float64", "f8", "=f8", "<f8", ">f8"]
|
||||
|
||||
_Complex64Codes = Literal["complex64", "c8", "=c8", "<c8", ">c8"]
|
||||
_Complex128Codes = Literal["complex128", "c16", "=c16", "<c16", ">c16"]
|
||||
|
||||
_ByteCodes = Literal["byte", "b", "=b", "<b", ">b"]
|
||||
_ShortCodes = Literal["short", "h", "=h", "<h", ">h"]
|
||||
_IntCCodes = Literal["intc", "i", "=i", "<i", ">i"]
|
||||
_IntPCodes = Literal["intp", "int0", "p", "=p", "<p", ">p"]
|
||||
_IntCodes = Literal["long", "int", "int_", "l", "=l", "<l", ">l"]
|
||||
_LongLongCodes = Literal["longlong", "q", "=q", "<q", ">q"]
|
||||
|
||||
_UByteCodes = Literal["ubyte", "B", "=B", "<B", ">B"]
|
||||
_UShortCodes = Literal["ushort", "H", "=H", "<H", ">H"]
|
||||
_UIntCCodes = Literal["uintc", "I", "=I", "<I", ">I"]
|
||||
_UIntPCodes = Literal["uintp", "uint0", "P", "=P", "<P", ">P"]
|
||||
_UIntCodes = Literal["ulong", "uint", "L", "=L", "<L", ">L"]
|
||||
_ULongLongCodes = Literal["ulonglong", "Q", "=Q", "<Q", ">Q"]
|
||||
|
||||
_HalfCodes = Literal["half", "e", "=e", "<e", ">e"]
|
||||
_SingleCodes = Literal["single", "f", "=f", "<f", ">f"]
|
||||
_DoubleCodes = Literal["double", "float", "float_", "d", "=d", "<d", ">d"]
|
||||
_LongDoubleCodes = Literal["longdouble", "longfloat", "g", "=g", "<g", ">g"]
|
||||
|
||||
_CSingleCodes = Literal["csingle", "singlecomplex", "F", "=F", "<F", ">F"]
|
||||
_CDoubleCodes = Literal["cdouble", "complex", "complex_", "cfloat", "D", "=D", "<D", ">D"]
|
||||
_CLongDoubleCodes = Literal["clongdouble", "clongfloat", "longcomplex", "G", "=G", "<G", ">G"]
|
||||
|
||||
_StrCodes = Literal["str", "str_", "str0", "unicode", "unicode_", "U", "=U", "<U", ">U"]
|
||||
_BytesCodes = Literal["bytes", "bytes_", "bytes0", "S", "=S", "<S", ">S"]
|
||||
_VoidCodes = Literal["void", "void0", "V", "=V", "<V", ">V"]
|
||||
_ObjectCodes = Literal["object", "object_", "O", "=O", "<O", ">O"]
|
||||
|
||||
_DT64Codes = Literal[
|
||||
"datetime64", "=datetime64", "<datetime64", ">datetime64",
|
||||
"datetime64[Y]", "=datetime64[Y]", "<datetime64[Y]", ">datetime64[Y]",
|
||||
"datetime64[M]", "=datetime64[M]", "<datetime64[M]", ">datetime64[M]",
|
||||
"datetime64[W]", "=datetime64[W]", "<datetime64[W]", ">datetime64[W]",
|
||||
"datetime64[D]", "=datetime64[D]", "<datetime64[D]", ">datetime64[D]",
|
||||
"datetime64[h]", "=datetime64[h]", "<datetime64[h]", ">datetime64[h]",
|
||||
"datetime64[m]", "=datetime64[m]", "<datetime64[m]", ">datetime64[m]",
|
||||
"datetime64[s]", "=datetime64[s]", "<datetime64[s]", ">datetime64[s]",
|
||||
"datetime64[ms]", "=datetime64[ms]", "<datetime64[ms]", ">datetime64[ms]",
|
||||
"datetime64[us]", "=datetime64[us]", "<datetime64[us]", ">datetime64[us]",
|
||||
"datetime64[ns]", "=datetime64[ns]", "<datetime64[ns]", ">datetime64[ns]",
|
||||
"datetime64[ps]", "=datetime64[ps]", "<datetime64[ps]", ">datetime64[ps]",
|
||||
"datetime64[fs]", "=datetime64[fs]", "<datetime64[fs]", ">datetime64[fs]",
|
||||
"datetime64[as]", "=datetime64[as]", "<datetime64[as]", ">datetime64[as]",
|
||||
"M", "=M", "<M", ">M",
|
||||
"M8", "=M8", "<M8", ">M8",
|
||||
"M8[Y]", "=M8[Y]", "<M8[Y]", ">M8[Y]",
|
||||
"M8[M]", "=M8[M]", "<M8[M]", ">M8[M]",
|
||||
"M8[W]", "=M8[W]", "<M8[W]", ">M8[W]",
|
||||
"M8[D]", "=M8[D]", "<M8[D]", ">M8[D]",
|
||||
"M8[h]", "=M8[h]", "<M8[h]", ">M8[h]",
|
||||
"M8[m]", "=M8[m]", "<M8[m]", ">M8[m]",
|
||||
"M8[s]", "=M8[s]", "<M8[s]", ">M8[s]",
|
||||
"M8[ms]", "=M8[ms]", "<M8[ms]", ">M8[ms]",
|
||||
"M8[us]", "=M8[us]", "<M8[us]", ">M8[us]",
|
||||
"M8[ns]", "=M8[ns]", "<M8[ns]", ">M8[ns]",
|
||||
"M8[ps]", "=M8[ps]", "<M8[ps]", ">M8[ps]",
|
||||
"M8[fs]", "=M8[fs]", "<M8[fs]", ">M8[fs]",
|
||||
"M8[as]", "=M8[as]", "<M8[as]", ">M8[as]",
|
||||
]
|
||||
_TD64Codes = Literal[
|
||||
"timedelta64", "=timedelta64", "<timedelta64", ">timedelta64",
|
||||
"timedelta64[Y]", "=timedelta64[Y]", "<timedelta64[Y]", ">timedelta64[Y]",
|
||||
"timedelta64[M]", "=timedelta64[M]", "<timedelta64[M]", ">timedelta64[M]",
|
||||
"timedelta64[W]", "=timedelta64[W]", "<timedelta64[W]", ">timedelta64[W]",
|
||||
"timedelta64[D]", "=timedelta64[D]", "<timedelta64[D]", ">timedelta64[D]",
|
||||
"timedelta64[h]", "=timedelta64[h]", "<timedelta64[h]", ">timedelta64[h]",
|
||||
"timedelta64[m]", "=timedelta64[m]", "<timedelta64[m]", ">timedelta64[m]",
|
||||
"timedelta64[s]", "=timedelta64[s]", "<timedelta64[s]", ">timedelta64[s]",
|
||||
"timedelta64[ms]", "=timedelta64[ms]", "<timedelta64[ms]", ">timedelta64[ms]",
|
||||
"timedelta64[us]", "=timedelta64[us]", "<timedelta64[us]", ">timedelta64[us]",
|
||||
"timedelta64[ns]", "=timedelta64[ns]", "<timedelta64[ns]", ">timedelta64[ns]",
|
||||
"timedelta64[ps]", "=timedelta64[ps]", "<timedelta64[ps]", ">timedelta64[ps]",
|
||||
"timedelta64[fs]", "=timedelta64[fs]", "<timedelta64[fs]", ">timedelta64[fs]",
|
||||
"timedelta64[as]", "=timedelta64[as]", "<timedelta64[as]", ">timedelta64[as]",
|
||||
"m", "=m", "<m", ">m",
|
||||
"m8", "=m8", "<m8", ">m8",
|
||||
"m8[Y]", "=m8[Y]", "<m8[Y]", ">m8[Y]",
|
||||
"m8[M]", "=m8[M]", "<m8[M]", ">m8[M]",
|
||||
"m8[W]", "=m8[W]", "<m8[W]", ">m8[W]",
|
||||
"m8[D]", "=m8[D]", "<m8[D]", ">m8[D]",
|
||||
"m8[h]", "=m8[h]", "<m8[h]", ">m8[h]",
|
||||
"m8[m]", "=m8[m]", "<m8[m]", ">m8[m]",
|
||||
"m8[s]", "=m8[s]", "<m8[s]", ">m8[s]",
|
||||
"m8[ms]", "=m8[ms]", "<m8[ms]", ">m8[ms]",
|
||||
"m8[us]", "=m8[us]", "<m8[us]", ">m8[us]",
|
||||
"m8[ns]", "=m8[ns]", "<m8[ns]", ">m8[ns]",
|
||||
"m8[ps]", "=m8[ps]", "<m8[ps]", ">m8[ps]",
|
||||
"m8[fs]", "=m8[fs]", "<m8[fs]", ">m8[fs]",
|
||||
"m8[as]", "=m8[as]", "<m8[as]", ">m8[as]",
|
||||
]
|
||||
|
|
@ -0,0 +1,246 @@
|
|||
from collections.abc import Sequence
|
||||
from typing import (
|
||||
Any,
|
||||
Sequence,
|
||||
Union,
|
||||
TypeVar,
|
||||
Protocol,
|
||||
TypedDict,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ._shape import _ShapeLike
|
||||
|
||||
from ._char_codes import (
|
||||
_BoolCodes,
|
||||
_UInt8Codes,
|
||||
_UInt16Codes,
|
||||
_UInt32Codes,
|
||||
_UInt64Codes,
|
||||
_Int8Codes,
|
||||
_Int16Codes,
|
||||
_Int32Codes,
|
||||
_Int64Codes,
|
||||
_Float16Codes,
|
||||
_Float32Codes,
|
||||
_Float64Codes,
|
||||
_Complex64Codes,
|
||||
_Complex128Codes,
|
||||
_ByteCodes,
|
||||
_ShortCodes,
|
||||
_IntCCodes,
|
||||
_IntPCodes,
|
||||
_IntCodes,
|
||||
_LongLongCodes,
|
||||
_UByteCodes,
|
||||
_UShortCodes,
|
||||
_UIntCCodes,
|
||||
_UIntPCodes,
|
||||
_UIntCodes,
|
||||
_ULongLongCodes,
|
||||
_HalfCodes,
|
||||
_SingleCodes,
|
||||
_DoubleCodes,
|
||||
_LongDoubleCodes,
|
||||
_CSingleCodes,
|
||||
_CDoubleCodes,
|
||||
_CLongDoubleCodes,
|
||||
_DT64Codes,
|
||||
_TD64Codes,
|
||||
_StrCodes,
|
||||
_BytesCodes,
|
||||
_VoidCodes,
|
||||
_ObjectCodes,
|
||||
)
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=np.generic)
|
||||
_DType_co = TypeVar("_DType_co", covariant=True, bound=np.dtype[Any])
|
||||
|
||||
_DTypeLikeNested = Any # TODO: wait for support for recursive types
|
||||
|
||||
|
||||
# Mandatory keys
|
||||
class _DTypeDictBase(TypedDict):
|
||||
names: Sequence[str]
|
||||
formats: Sequence[_DTypeLikeNested]
|
||||
|
||||
|
||||
# Mandatory + optional keys
|
||||
class _DTypeDict(_DTypeDictBase, total=False):
|
||||
# Only `str` elements are usable as indexing aliases,
|
||||
# but `titles` can in principle accept any object
|
||||
offsets: Sequence[int]
|
||||
titles: Sequence[Any]
|
||||
itemsize: int
|
||||
aligned: bool
|
||||
|
||||
|
||||
# A protocol for anything with the dtype attribute
|
||||
@runtime_checkable
|
||||
class _SupportsDType(Protocol[_DType_co]):
|
||||
@property
|
||||
def dtype(self) -> _DType_co: ...
|
||||
|
||||
|
||||
# A subset of `npt.DTypeLike` that can be parametrized w.r.t. `np.generic`
|
||||
_DTypeLike = Union[
|
||||
np.dtype[_SCT],
|
||||
type[_SCT],
|
||||
_SupportsDType[np.dtype[_SCT]],
|
||||
]
|
||||
|
||||
|
||||
# Would create a dtype[np.void]
|
||||
_VoidDTypeLike = Union[
|
||||
# (flexible_dtype, itemsize)
|
||||
tuple[_DTypeLikeNested, int],
|
||||
# (fixed_dtype, shape)
|
||||
tuple[_DTypeLikeNested, _ShapeLike],
|
||||
# [(field_name, field_dtype, field_shape), ...]
|
||||
#
|
||||
# The type here is quite broad because NumPy accepts quite a wide
|
||||
# range of inputs inside the list; see the tests for some
|
||||
# examples.
|
||||
list[Any],
|
||||
# {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ...,
|
||||
# 'itemsize': ...}
|
||||
_DTypeDict,
|
||||
# (base_dtype, new_dtype)
|
||||
tuple[_DTypeLikeNested, _DTypeLikeNested],
|
||||
]
|
||||
|
||||
# Anything that can be coerced into numpy.dtype.
|
||||
# Reference: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
|
||||
DTypeLike = Union[
|
||||
np.dtype[Any],
|
||||
# default data type (float64)
|
||||
None,
|
||||
# array-scalar types and generic types
|
||||
type[Any], # NOTE: We're stuck with `type[Any]` due to object dtypes
|
||||
# anything with a dtype attribute
|
||||
_SupportsDType[np.dtype[Any]],
|
||||
# character codes, type strings or comma-separated fields, e.g., 'float64'
|
||||
str,
|
||||
_VoidDTypeLike,
|
||||
]
|
||||
|
||||
# NOTE: while it is possible to provide the dtype as a dict of
|
||||
# dtype-like objects (e.g. `{'field1': ..., 'field2': ..., ...}`),
|
||||
# this syntax is officially discourged and
|
||||
# therefore not included in the Union defining `DTypeLike`.
|
||||
#
|
||||
# See https://github.com/numpy/numpy/issues/16891 for more details.
|
||||
|
||||
# Aliases for commonly used dtype-like objects.
|
||||
# Note that the precision of `np.number` subclasses is ignored herein.
|
||||
_DTypeLikeBool = Union[
|
||||
type[bool],
|
||||
type[np.bool_],
|
||||
np.dtype[np.bool_],
|
||||
_SupportsDType[np.dtype[np.bool_]],
|
||||
_BoolCodes,
|
||||
]
|
||||
_DTypeLikeUInt = Union[
|
||||
type[np.unsignedinteger],
|
||||
np.dtype[np.unsignedinteger],
|
||||
_SupportsDType[np.dtype[np.unsignedinteger]],
|
||||
_UInt8Codes,
|
||||
_UInt16Codes,
|
||||
_UInt32Codes,
|
||||
_UInt64Codes,
|
||||
_UByteCodes,
|
||||
_UShortCodes,
|
||||
_UIntCCodes,
|
||||
_UIntPCodes,
|
||||
_UIntCodes,
|
||||
_ULongLongCodes,
|
||||
]
|
||||
_DTypeLikeInt = Union[
|
||||
type[int],
|
||||
type[np.signedinteger],
|
||||
np.dtype[np.signedinteger],
|
||||
_SupportsDType[np.dtype[np.signedinteger]],
|
||||
_Int8Codes,
|
||||
_Int16Codes,
|
||||
_Int32Codes,
|
||||
_Int64Codes,
|
||||
_ByteCodes,
|
||||
_ShortCodes,
|
||||
_IntCCodes,
|
||||
_IntPCodes,
|
||||
_IntCodes,
|
||||
_LongLongCodes,
|
||||
]
|
||||
_DTypeLikeFloat = Union[
|
||||
type[float],
|
||||
type[np.floating],
|
||||
np.dtype[np.floating],
|
||||
_SupportsDType[np.dtype[np.floating]],
|
||||
_Float16Codes,
|
||||
_Float32Codes,
|
||||
_Float64Codes,
|
||||
_HalfCodes,
|
||||
_SingleCodes,
|
||||
_DoubleCodes,
|
||||
_LongDoubleCodes,
|
||||
]
|
||||
_DTypeLikeComplex = Union[
|
||||
type[complex],
|
||||
type[np.complexfloating],
|
||||
np.dtype[np.complexfloating],
|
||||
_SupportsDType[np.dtype[np.complexfloating]],
|
||||
_Complex64Codes,
|
||||
_Complex128Codes,
|
||||
_CSingleCodes,
|
||||
_CDoubleCodes,
|
||||
_CLongDoubleCodes,
|
||||
]
|
||||
_DTypeLikeDT64 = Union[
|
||||
type[np.timedelta64],
|
||||
np.dtype[np.timedelta64],
|
||||
_SupportsDType[np.dtype[np.timedelta64]],
|
||||
_TD64Codes,
|
||||
]
|
||||
_DTypeLikeTD64 = Union[
|
||||
type[np.datetime64],
|
||||
np.dtype[np.datetime64],
|
||||
_SupportsDType[np.dtype[np.datetime64]],
|
||||
_DT64Codes,
|
||||
]
|
||||
_DTypeLikeStr = Union[
|
||||
type[str],
|
||||
type[np.str_],
|
||||
np.dtype[np.str_],
|
||||
_SupportsDType[np.dtype[np.str_]],
|
||||
_StrCodes,
|
||||
]
|
||||
_DTypeLikeBytes = Union[
|
||||
type[bytes],
|
||||
type[np.bytes_],
|
||||
np.dtype[np.bytes_],
|
||||
_SupportsDType[np.dtype[np.bytes_]],
|
||||
_BytesCodes,
|
||||
]
|
||||
_DTypeLikeVoid = Union[
|
||||
type[np.void],
|
||||
np.dtype[np.void],
|
||||
_SupportsDType[np.dtype[np.void]],
|
||||
_VoidCodes,
|
||||
_VoidDTypeLike,
|
||||
]
|
||||
_DTypeLikeObject = Union[
|
||||
type,
|
||||
np.dtype[np.object_],
|
||||
_SupportsDType[np.dtype[np.object_]],
|
||||
_ObjectCodes,
|
||||
]
|
||||
|
||||
_DTypeLikeComplex_co = Union[
|
||||
_DTypeLikeBool,
|
||||
_DTypeLikeUInt,
|
||||
_DTypeLikeInt,
|
||||
_DTypeLikeFloat,
|
||||
_DTypeLikeComplex,
|
||||
]
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
"""A module with platform-specific extended precision
|
||||
`numpy.number` subclasses.
|
||||
|
||||
The subclasses are defined here (instead of ``__init__.pyi``) such
|
||||
that they can be imported conditionally via the numpy's mypy plugin.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from . import (
|
||||
_80Bit,
|
||||
_96Bit,
|
||||
_128Bit,
|
||||
_256Bit,
|
||||
)
|
||||
|
||||
uint128 = np.unsignedinteger[_128Bit]
|
||||
uint256 = np.unsignedinteger[_256Bit]
|
||||
int128 = np.signedinteger[_128Bit]
|
||||
int256 = np.signedinteger[_256Bit]
|
||||
float80 = np.floating[_80Bit]
|
||||
float96 = np.floating[_96Bit]
|
||||
float128 = np.floating[_128Bit]
|
||||
float256 = np.floating[_256Bit]
|
||||
complex160 = np.complexfloating[_80Bit, _80Bit]
|
||||
complex192 = np.complexfloating[_96Bit, _96Bit]
|
||||
complex256 = np.complexfloating[_128Bit, _128Bit]
|
||||
complex512 = np.complexfloating[_256Bit, _256Bit]
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
"""A module with the precisions of platform-specific `~numpy.number`s."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
# To-be replaced with a `npt.NBitBase` subclass by numpy's mypy plugin
|
||||
_NBitByte = Any
|
||||
_NBitShort = Any
|
||||
_NBitIntC = Any
|
||||
_NBitIntP = Any
|
||||
_NBitInt = Any
|
||||
_NBitLongLong = Any
|
||||
|
||||
_NBitHalf = Any
|
||||
_NBitSingle = Any
|
||||
_NBitDouble = Any
|
||||
_NBitLongDouble = Any
|
||||
|
|
@ -0,0 +1,86 @@
|
|||
"""A module containing the `_NestedSequence` protocol."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
from typing import (
|
||||
Any,
|
||||
TypeVar,
|
||||
Protocol,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
__all__ = ["_NestedSequence"]
|
||||
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class _NestedSequence(Protocol[_T_co]):
|
||||
"""A protocol for representing nested sequences.
|
||||
|
||||
Warning
|
||||
-------
|
||||
`_NestedSequence` currently does not work in combination with typevars,
|
||||
*e.g.* ``def func(a: _NestedSequnce[T]) -> T: ...``.
|
||||
|
||||
See Also
|
||||
--------
|
||||
collections.abc.Sequence
|
||||
ABCs for read-only and mutable :term:`sequences`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> from __future__ import annotations
|
||||
|
||||
>>> from typing import TYPE_CHECKING
|
||||
>>> import numpy as np
|
||||
>>> from numpy._typing import _NestedSequence
|
||||
|
||||
>>> def get_dtype(seq: _NestedSequence[float]) -> np.dtype[np.float64]:
|
||||
... return np.asarray(seq).dtype
|
||||
|
||||
>>> a = get_dtype([1.0])
|
||||
>>> b = get_dtype([[1.0]])
|
||||
>>> c = get_dtype([[[1.0]]])
|
||||
>>> d = get_dtype([[[[1.0]]]])
|
||||
|
||||
>>> if TYPE_CHECKING:
|
||||
... reveal_locals()
|
||||
... # note: Revealed local types are:
|
||||
... # note: a: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
... # note: b: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
... # note: c: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
... # note: d: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
|
||||
"""
|
||||
|
||||
def __len__(self, /) -> int:
|
||||
"""Implement ``len(self)``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __getitem__(self, index: int, /) -> _T_co | _NestedSequence[_T_co]:
|
||||
"""Implement ``self[x]``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __contains__(self, x: object, /) -> bool:
|
||||
"""Implement ``x in self``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
||||
"""Implement ``iter(self)``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
||||
"""Implement ``reversed(self)``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def count(self, value: Any, /) -> int:
|
||||
"""Return the number of occurrences of `value`."""
|
||||
raise NotImplementedError
|
||||
|
||||
def index(self, value: Any, /) -> int:
|
||||
"""Return the first index of `value`."""
|
||||
raise NotImplementedError
|
||||
|
|
@ -0,0 +1,30 @@
|
|||
from typing import Union, Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
# NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and
|
||||
# `np.bytes_` are already subclasses of their builtin counterpart
|
||||
|
||||
_CharLike_co = Union[str, bytes]
|
||||
|
||||
# The 6 `<X>Like_co` type-aliases below represent all scalars that can be
|
||||
# coerced into `<X>` (with the casting rule `same_kind`)
|
||||
_BoolLike_co = Union[bool, np.bool_]
|
||||
_UIntLike_co = Union[_BoolLike_co, np.unsignedinteger[Any]]
|
||||
_IntLike_co = Union[_BoolLike_co, int, np.integer[Any]]
|
||||
_FloatLike_co = Union[_IntLike_co, float, np.floating[Any]]
|
||||
_ComplexLike_co = Union[_FloatLike_co, complex, np.complexfloating[Any, Any]]
|
||||
_TD64Like_co = Union[_IntLike_co, np.timedelta64]
|
||||
|
||||
_NumberLike_co = Union[int, float, complex, np.number[Any], np.bool_]
|
||||
_ScalarLike_co = Union[
|
||||
int,
|
||||
float,
|
||||
complex,
|
||||
str,
|
||||
bytes,
|
||||
np.generic,
|
||||
]
|
||||
|
||||
# `_VoidLike_co` is technically not a scalar, but it's close enough
|
||||
_VoidLike_co = Union[tuple[Any, ...], np.void]
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
from collections.abc import Sequence
|
||||
from typing import Union, SupportsIndex
|
||||
|
||||
_Shape = tuple[int, ...]
|
||||
|
||||
# Anything that can be coerced to a shape tuple
|
||||
_ShapeLike = Union[SupportsIndex, Sequence[SupportsIndex]]
|
||||
445
AppDir/usr/lib/python3.12/site-packages/numpy/_typing/_ufunc.pyi
Normal file
445
AppDir/usr/lib/python3.12/site-packages/numpy/_typing/_ufunc.pyi
Normal file
|
|
@ -0,0 +1,445 @@
|
|||
"""A module with private type-check-only `numpy.ufunc` subclasses.
|
||||
|
||||
The signatures of the ufuncs are too varied to reasonably type
|
||||
with a single class. So instead, `ufunc` has been expanded into
|
||||
four private subclasses, one for each combination of
|
||||
`~ufunc.nin` and `~ufunc.nout`.
|
||||
|
||||
"""
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Generic,
|
||||
overload,
|
||||
TypeVar,
|
||||
Literal,
|
||||
SupportsIndex,
|
||||
Protocol,
|
||||
)
|
||||
|
||||
from numpy import ufunc, _CastingKind, _OrderKACF
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ._shape import _ShapeLike
|
||||
from ._scalars import _ScalarLike_co
|
||||
from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co
|
||||
from ._dtype_like import DTypeLike
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_2Tuple = tuple[_T, _T]
|
||||
_3Tuple = tuple[_T, _T, _T]
|
||||
_4Tuple = tuple[_T, _T, _T, _T]
|
||||
|
||||
_NTypes = TypeVar("_NTypes", bound=int)
|
||||
_IDType = TypeVar("_IDType", bound=Any)
|
||||
_NameType = TypeVar("_NameType", bound=str)
|
||||
|
||||
|
||||
class _SupportsArrayUFunc(Protocol):
|
||||
def __array_ufunc__(
|
||||
self,
|
||||
ufunc: ufunc,
|
||||
method: Literal["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
|
||||
*inputs: Any,
|
||||
**kwargs: Any,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
# NOTE: In reality `extobj` should be a length of list 3 containing an
|
||||
# int, an int, and a callable, but there's no way to properly express
|
||||
# non-homogenous lists.
|
||||
# Use `Any` over `Union` to avoid issues related to lists invariance.
|
||||
|
||||
# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for
|
||||
# ufuncs that don't accept two input arguments and return one output argument.
|
||||
# In such cases the respective methods are simply typed as `None`.
|
||||
|
||||
# NOTE: Similarly, `at` won't be defined for ufuncs that return
|
||||
# multiple outputs; in such cases `at` is typed as `None`
|
||||
|
||||
# NOTE: If 2 output types are returned then `out` must be a
|
||||
# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable
|
||||
|
||||
class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[2]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
out: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _2Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _2Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _SupportsArrayUFunc,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _2Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def at(
|
||||
self,
|
||||
a: _SupportsArrayUFunc,
|
||||
indices: _ArrayLikeInt_co,
|
||||
/,
|
||||
) -> None: ...
|
||||
|
||||
class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[3]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
__x2: _ScalarLike_co,
|
||||
out: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def at(
|
||||
self,
|
||||
a: NDArray[Any],
|
||||
indices: _ArrayLikeInt_co,
|
||||
b: ArrayLike,
|
||||
/,
|
||||
) -> None: ...
|
||||
|
||||
def reduce(
|
||||
self,
|
||||
array: ArrayLike,
|
||||
axis: None | _ShapeLike = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: None | NDArray[Any] = ...,
|
||||
keepdims: bool = ...,
|
||||
initial: Any = ...,
|
||||
where: _ArrayLikeBool_co = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def accumulate(
|
||||
self,
|
||||
array: ArrayLike,
|
||||
axis: SupportsIndex = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: None | NDArray[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def reduceat(
|
||||
self,
|
||||
array: ArrayLike,
|
||||
indices: _ArrayLikeInt_co,
|
||||
axis: SupportsIndex = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: None | NDArray[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
# Expand `**kwargs` into explicit keyword-only arguments
|
||||
@overload
|
||||
def outer(
|
||||
self,
|
||||
A: _ScalarLike_co,
|
||||
B: _ScalarLike_co,
|
||||
/, *,
|
||||
out: None = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def outer( # type: ignore[misc]
|
||||
self,
|
||||
A: ArrayLike,
|
||||
B: ArrayLike,
|
||||
/, *,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[3]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
@property
|
||||
def at(self) -> None: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
__out1: None = ...,
|
||||
__out2: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__out1: None | NDArray[Any] = ...,
|
||||
__out2: None | NDArray[Any] = ...,
|
||||
*,
|
||||
out: _2Tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[NDArray[Any]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _SupportsArrayUFunc,
|
||||
__out1: None | NDArray[Any] = ...,
|
||||
__out2: None | NDArray[Any] = ...,
|
||||
*,
|
||||
out: _2Tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[Any]: ...
|
||||
|
||||
class _UFunc_Nin2_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[4]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
@property
|
||||
def at(self) -> None: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
__x2: _ScalarLike_co,
|
||||
__out1: None = ...,
|
||||
__out2: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _4Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
__out1: None | NDArray[Any] = ...,
|
||||
__out2: None | NDArray[Any] = ...,
|
||||
*,
|
||||
out: _2Tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _4Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[NDArray[Any]]: ...
|
||||
|
||||
class _GUFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[3]: ...
|
||||
|
||||
# NOTE: In practice the only gufunc in the main namespace is `matmul`,
|
||||
# so we can use its signature here
|
||||
@property
|
||||
def signature(self) -> Literal["(n?,k),(k,m?)->(n?,m?)"]: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
@property
|
||||
def at(self) -> None: ...
|
||||
|
||||
# Scalar for 1D array-likes; ndarray otherwise
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
out: None = ...,
|
||||
*,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
axes: list[_2Tuple[SupportsIndex]] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
out: NDArray[Any] | tuple[NDArray[Any]],
|
||||
*,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
axes: list[_2Tuple[SupportsIndex]] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
def configuration(parent_package='', top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
config = Configuration('_typing', parent_package, top_path)
|
||||
config.add_data_files('*.pyi')
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
"""
|
||||
This is a module for defining private helpers which do not depend on the
|
||||
rest of NumPy.
|
||||
|
||||
Everything in here must be self-contained so that it can be
|
||||
imported anywhere else without creating circular imports.
|
||||
If a utility requires the import of NumPy, it probably belongs
|
||||
in ``numpy.core``.
|
||||
"""
|
||||
|
||||
from ._convertions import asunicode, asbytes
|
||||
|
||||
|
||||
def set_module(module):
|
||||
"""Private decorator for overriding __module__ on a function or class.
|
||||
|
||||
Example usage::
|
||||
|
||||
@set_module('numpy')
|
||||
def example():
|
||||
pass
|
||||
|
||||
assert example.__module__ == 'numpy'
|
||||
"""
|
||||
def decorator(func):
|
||||
if module is not None:
|
||||
func.__module__ = module
|
||||
return func
|
||||
return decorator
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
"""
|
||||
A set of methods retained from np.compat module that
|
||||
are still used across codebase.
|
||||
"""
|
||||
|
||||
__all__ = ["asunicode", "asbytes"]
|
||||
|
||||
|
||||
def asunicode(s):
|
||||
if isinstance(s, bytes):
|
||||
return s.decode('latin1')
|
||||
return str(s)
|
||||
|
||||
|
||||
def asbytes(s):
|
||||
if isinstance(s, bytes):
|
||||
return s
|
||||
return str(s).encode('latin1')
|
||||
191
AppDir/usr/lib/python3.12/site-packages/numpy/_utils/_inspect.py
Normal file
191
AppDir/usr/lib/python3.12/site-packages/numpy/_utils/_inspect.py
Normal file
|
|
@ -0,0 +1,191 @@
|
|||
"""Subset of inspect module from upstream python
|
||||
|
||||
We use this instead of upstream because upstream inspect is slow to import, and
|
||||
significantly contributes to numpy import times. Importing this copy has almost
|
||||
no overhead.
|
||||
|
||||
"""
|
||||
import types
|
||||
|
||||
__all__ = ['getargspec', 'formatargspec']
|
||||
|
||||
# ----------------------------------------------------------- type-checking
|
||||
def ismethod(object):
|
||||
"""Return true if the object is an instance method.
|
||||
|
||||
Instance method objects provide these attributes:
|
||||
__doc__ documentation string
|
||||
__name__ name with which this method was defined
|
||||
im_class class object in which this method belongs
|
||||
im_func function object containing implementation of method
|
||||
im_self instance to which this method is bound, or None
|
||||
|
||||
"""
|
||||
return isinstance(object, types.MethodType)
|
||||
|
||||
def isfunction(object):
|
||||
"""Return true if the object is a user-defined function.
|
||||
|
||||
Function objects provide these attributes:
|
||||
__doc__ documentation string
|
||||
__name__ name with which this function was defined
|
||||
func_code code object containing compiled function bytecode
|
||||
func_defaults tuple of any default values for arguments
|
||||
func_doc (same as __doc__)
|
||||
func_globals global namespace in which this function was defined
|
||||
func_name (same as __name__)
|
||||
|
||||
"""
|
||||
return isinstance(object, types.FunctionType)
|
||||
|
||||
def iscode(object):
|
||||
"""Return true if the object is a code object.
|
||||
|
||||
Code objects provide these attributes:
|
||||
co_argcount number of arguments (not including * or ** args)
|
||||
co_code string of raw compiled bytecode
|
||||
co_consts tuple of constants used in the bytecode
|
||||
co_filename name of file in which this code object was created
|
||||
co_firstlineno number of first line in Python source code
|
||||
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
|
||||
co_lnotab encoded mapping of line numbers to bytecode indices
|
||||
co_name name with which this code object was defined
|
||||
co_names tuple of names of local variables
|
||||
co_nlocals number of local variables
|
||||
co_stacksize virtual machine stack space required
|
||||
co_varnames tuple of names of arguments and local variables
|
||||
|
||||
"""
|
||||
return isinstance(object, types.CodeType)
|
||||
|
||||
# ------------------------------------------------ argument list extraction
|
||||
# These constants are from Python's compile.h.
|
||||
CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = 1, 2, 4, 8
|
||||
|
||||
def getargs(co):
|
||||
"""Get information about the arguments accepted by a code object.
|
||||
|
||||
Three things are returned: (args, varargs, varkw), where 'args' is
|
||||
a list of argument names (possibly containing nested lists), and
|
||||
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
||||
|
||||
"""
|
||||
|
||||
if not iscode(co):
|
||||
raise TypeError('arg is not a code object')
|
||||
|
||||
nargs = co.co_argcount
|
||||
names = co.co_varnames
|
||||
args = list(names[:nargs])
|
||||
|
||||
# The following acrobatics are for anonymous (tuple) arguments.
|
||||
# Which we do not need to support, so remove to avoid importing
|
||||
# the dis module.
|
||||
for i in range(nargs):
|
||||
if args[i][:1] in ['', '.']:
|
||||
raise TypeError("tuple function arguments are not supported")
|
||||
varargs = None
|
||||
if co.co_flags & CO_VARARGS:
|
||||
varargs = co.co_varnames[nargs]
|
||||
nargs = nargs + 1
|
||||
varkw = None
|
||||
if co.co_flags & CO_VARKEYWORDS:
|
||||
varkw = co.co_varnames[nargs]
|
||||
return args, varargs, varkw
|
||||
|
||||
def getargspec(func):
|
||||
"""Get the names and default values of a function's arguments.
|
||||
|
||||
A tuple of four things is returned: (args, varargs, varkw, defaults).
|
||||
'args' is a list of the argument names (it may contain nested lists).
|
||||
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
||||
'defaults' is an n-tuple of the default values of the last n arguments.
|
||||
|
||||
"""
|
||||
|
||||
if ismethod(func):
|
||||
func = func.__func__
|
||||
if not isfunction(func):
|
||||
raise TypeError('arg is not a Python function')
|
||||
args, varargs, varkw = getargs(func.__code__)
|
||||
return args, varargs, varkw, func.__defaults__
|
||||
|
||||
def getargvalues(frame):
|
||||
"""Get information about arguments passed into a particular frame.
|
||||
|
||||
A tuple of four things is returned: (args, varargs, varkw, locals).
|
||||
'args' is a list of the argument names (it may contain nested lists).
|
||||
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
||||
'locals' is the locals dictionary of the given frame.
|
||||
|
||||
"""
|
||||
args, varargs, varkw = getargs(frame.f_code)
|
||||
return args, varargs, varkw, frame.f_locals
|
||||
|
||||
def joinseq(seq):
|
||||
if len(seq) == 1:
|
||||
return '(' + seq[0] + ',)'
|
||||
else:
|
||||
return '(' + ', '.join(seq) + ')'
|
||||
|
||||
def strseq(object, convert, join=joinseq):
|
||||
"""Recursively walk a sequence, stringifying each element.
|
||||
|
||||
"""
|
||||
if type(object) in [list, tuple]:
|
||||
return join([strseq(_o, convert, join) for _o in object])
|
||||
else:
|
||||
return convert(object)
|
||||
|
||||
def formatargspec(args, varargs=None, varkw=None, defaults=None,
|
||||
formatarg=str,
|
||||
formatvarargs=lambda name: '*' + name,
|
||||
formatvarkw=lambda name: '**' + name,
|
||||
formatvalue=lambda value: '=' + repr(value),
|
||||
join=joinseq):
|
||||
"""Format an argument spec from the 4 values returned by getargspec.
|
||||
|
||||
The first four arguments are (args, varargs, varkw, defaults). The
|
||||
other four arguments are the corresponding optional formatting functions
|
||||
that are called to turn names and values into strings. The ninth
|
||||
argument is an optional function to format the sequence of arguments.
|
||||
|
||||
"""
|
||||
specs = []
|
||||
if defaults:
|
||||
firstdefault = len(args) - len(defaults)
|
||||
for i in range(len(args)):
|
||||
spec = strseq(args[i], formatarg, join)
|
||||
if defaults and i >= firstdefault:
|
||||
spec = spec + formatvalue(defaults[i - firstdefault])
|
||||
specs.append(spec)
|
||||
if varargs is not None:
|
||||
specs.append(formatvarargs(varargs))
|
||||
if varkw is not None:
|
||||
specs.append(formatvarkw(varkw))
|
||||
return '(' + ', '.join(specs) + ')'
|
||||
|
||||
def formatargvalues(args, varargs, varkw, locals,
|
||||
formatarg=str,
|
||||
formatvarargs=lambda name: '*' + name,
|
||||
formatvarkw=lambda name: '**' + name,
|
||||
formatvalue=lambda value: '=' + repr(value),
|
||||
join=joinseq):
|
||||
"""Format an argument spec from the 4 values returned by getargvalues.
|
||||
|
||||
The first four arguments are (args, varargs, varkw, locals). The
|
||||
next four arguments are the corresponding optional formatting functions
|
||||
that are called to turn names and values into strings. The ninth
|
||||
argument is an optional function to format the sequence of arguments.
|
||||
|
||||
"""
|
||||
def convert(name, locals=locals,
|
||||
formatarg=formatarg, formatvalue=formatvalue):
|
||||
return formatarg(name) + formatvalue(locals[name])
|
||||
specs = [strseq(arg, convert, join) for arg in args]
|
||||
|
||||
if varargs:
|
||||
specs.append(formatvarargs(varargs) + formatvalue(locals[varargs]))
|
||||
if varkw:
|
||||
specs.append(formatvarkw(varkw) + formatvalue(locals[varkw]))
|
||||
return '(' + ', '.join(specs) + ')'
|
||||
487
AppDir/usr/lib/python3.12/site-packages/numpy/_utils/_pep440.py
Normal file
487
AppDir/usr/lib/python3.12/site-packages/numpy/_utils/_pep440.py
Normal file
|
|
@ -0,0 +1,487 @@
|
|||
"""Utility to compare pep440 compatible version strings.
|
||||
|
||||
The LooseVersion and StrictVersion classes that distutils provides don't
|
||||
work; they don't recognize anything like alpha/beta/rc/dev versions.
|
||||
"""
|
||||
|
||||
# Copyright (c) Donald Stufft and individual contributors.
|
||||
# All rights reserved.
|
||||
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
|
||||
# 1. Redistributions of source code must retain the above copyright notice,
|
||||
# this list of conditions and the following disclaimer.
|
||||
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
import collections
|
||||
import itertools
|
||||
import re
|
||||
|
||||
|
||||
__all__ = [
|
||||
"parse", "Version", "LegacyVersion", "InvalidVersion", "VERSION_PATTERN",
|
||||
]
|
||||
|
||||
|
||||
# BEGIN packaging/_structures.py
|
||||
|
||||
|
||||
class Infinity:
|
||||
def __repr__(self):
|
||||
return "Infinity"
|
||||
|
||||
def __hash__(self):
|
||||
return hash(repr(self))
|
||||
|
||||
def __lt__(self, other):
|
||||
return False
|
||||
|
||||
def __le__(self, other):
|
||||
return False
|
||||
|
||||
def __eq__(self, other):
|
||||
return isinstance(other, self.__class__)
|
||||
|
||||
def __ne__(self, other):
|
||||
return not isinstance(other, self.__class__)
|
||||
|
||||
def __gt__(self, other):
|
||||
return True
|
||||
|
||||
def __ge__(self, other):
|
||||
return True
|
||||
|
||||
def __neg__(self):
|
||||
return NegativeInfinity
|
||||
|
||||
|
||||
Infinity = Infinity()
|
||||
|
||||
|
||||
class NegativeInfinity:
|
||||
def __repr__(self):
|
||||
return "-Infinity"
|
||||
|
||||
def __hash__(self):
|
||||
return hash(repr(self))
|
||||
|
||||
def __lt__(self, other):
|
||||
return True
|
||||
|
||||
def __le__(self, other):
|
||||
return True
|
||||
|
||||
def __eq__(self, other):
|
||||
return isinstance(other, self.__class__)
|
||||
|
||||
def __ne__(self, other):
|
||||
return not isinstance(other, self.__class__)
|
||||
|
||||
def __gt__(self, other):
|
||||
return False
|
||||
|
||||
def __ge__(self, other):
|
||||
return False
|
||||
|
||||
def __neg__(self):
|
||||
return Infinity
|
||||
|
||||
|
||||
# BEGIN packaging/version.py
|
||||
|
||||
|
||||
NegativeInfinity = NegativeInfinity()
|
||||
|
||||
_Version = collections.namedtuple(
|
||||
"_Version",
|
||||
["epoch", "release", "dev", "pre", "post", "local"],
|
||||
)
|
||||
|
||||
|
||||
def parse(version):
|
||||
"""
|
||||
Parse the given version string and return either a :class:`Version` object
|
||||
or a :class:`LegacyVersion` object depending on if the given version is
|
||||
a valid PEP 440 version or a legacy version.
|
||||
"""
|
||||
try:
|
||||
return Version(version)
|
||||
except InvalidVersion:
|
||||
return LegacyVersion(version)
|
||||
|
||||
|
||||
class InvalidVersion(ValueError):
|
||||
"""
|
||||
An invalid version was found, users should refer to PEP 440.
|
||||
"""
|
||||
|
||||
|
||||
class _BaseVersion:
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self._key)
|
||||
|
||||
def __lt__(self, other):
|
||||
return self._compare(other, lambda s, o: s < o)
|
||||
|
||||
def __le__(self, other):
|
||||
return self._compare(other, lambda s, o: s <= o)
|
||||
|
||||
def __eq__(self, other):
|
||||
return self._compare(other, lambda s, o: s == o)
|
||||
|
||||
def __ge__(self, other):
|
||||
return self._compare(other, lambda s, o: s >= o)
|
||||
|
||||
def __gt__(self, other):
|
||||
return self._compare(other, lambda s, o: s > o)
|
||||
|
||||
def __ne__(self, other):
|
||||
return self._compare(other, lambda s, o: s != o)
|
||||
|
||||
def _compare(self, other, method):
|
||||
if not isinstance(other, _BaseVersion):
|
||||
return NotImplemented
|
||||
|
||||
return method(self._key, other._key)
|
||||
|
||||
|
||||
class LegacyVersion(_BaseVersion):
|
||||
|
||||
def __init__(self, version):
|
||||
self._version = str(version)
|
||||
self._key = _legacy_cmpkey(self._version)
|
||||
|
||||
def __str__(self):
|
||||
return self._version
|
||||
|
||||
def __repr__(self):
|
||||
return "<LegacyVersion({0})>".format(repr(str(self)))
|
||||
|
||||
@property
|
||||
def public(self):
|
||||
return self._version
|
||||
|
||||
@property
|
||||
def base_version(self):
|
||||
return self._version
|
||||
|
||||
@property
|
||||
def local(self):
|
||||
return None
|
||||
|
||||
@property
|
||||
def is_prerelease(self):
|
||||
return False
|
||||
|
||||
@property
|
||||
def is_postrelease(self):
|
||||
return False
|
||||
|
||||
|
||||
_legacy_version_component_re = re.compile(
|
||||
r"(\d+ | [a-z]+ | \.| -)", re.VERBOSE,
|
||||
)
|
||||
|
||||
_legacy_version_replacement_map = {
|
||||
"pre": "c", "preview": "c", "-": "final-", "rc": "c", "dev": "@",
|
||||
}
|
||||
|
||||
|
||||
def _parse_version_parts(s):
|
||||
for part in _legacy_version_component_re.split(s):
|
||||
part = _legacy_version_replacement_map.get(part, part)
|
||||
|
||||
if not part or part == ".":
|
||||
continue
|
||||
|
||||
if part[:1] in "0123456789":
|
||||
# pad for numeric comparison
|
||||
yield part.zfill(8)
|
||||
else:
|
||||
yield "*" + part
|
||||
|
||||
# ensure that alpha/beta/candidate are before final
|
||||
yield "*final"
|
||||
|
||||
|
||||
def _legacy_cmpkey(version):
|
||||
# We hardcode an epoch of -1 here. A PEP 440 version can only have an epoch
|
||||
# greater than or equal to 0. This will effectively put the LegacyVersion,
|
||||
# which uses the defacto standard originally implemented by setuptools,
|
||||
# as before all PEP 440 versions.
|
||||
epoch = -1
|
||||
|
||||
# This scheme is taken from pkg_resources.parse_version setuptools prior to
|
||||
# its adoption of the packaging library.
|
||||
parts = []
|
||||
for part in _parse_version_parts(version.lower()):
|
||||
if part.startswith("*"):
|
||||
# remove "-" before a prerelease tag
|
||||
if part < "*final":
|
||||
while parts and parts[-1] == "*final-":
|
||||
parts.pop()
|
||||
|
||||
# remove trailing zeros from each series of numeric parts
|
||||
while parts and parts[-1] == "00000000":
|
||||
parts.pop()
|
||||
|
||||
parts.append(part)
|
||||
parts = tuple(parts)
|
||||
|
||||
return epoch, parts
|
||||
|
||||
|
||||
# Deliberately not anchored to the start and end of the string, to make it
|
||||
# easier for 3rd party code to reuse
|
||||
VERSION_PATTERN = r"""
|
||||
v?
|
||||
(?:
|
||||
(?:(?P<epoch>[0-9]+)!)? # epoch
|
||||
(?P<release>[0-9]+(?:\.[0-9]+)*) # release segment
|
||||
(?P<pre> # pre-release
|
||||
[-_\.]?
|
||||
(?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))
|
||||
[-_\.]?
|
||||
(?P<pre_n>[0-9]+)?
|
||||
)?
|
||||
(?P<post> # post release
|
||||
(?:-(?P<post_n1>[0-9]+))
|
||||
|
|
||||
(?:
|
||||
[-_\.]?
|
||||
(?P<post_l>post|rev|r)
|
||||
[-_\.]?
|
||||
(?P<post_n2>[0-9]+)?
|
||||
)
|
||||
)?
|
||||
(?P<dev> # dev release
|
||||
[-_\.]?
|
||||
(?P<dev_l>dev)
|
||||
[-_\.]?
|
||||
(?P<dev_n>[0-9]+)?
|
||||
)?
|
||||
)
|
||||
(?:\+(?P<local>[a-z0-9]+(?:[-_\.][a-z0-9]+)*))? # local version
|
||||
"""
|
||||
|
||||
|
||||
class Version(_BaseVersion):
|
||||
|
||||
_regex = re.compile(
|
||||
r"^\s*" + VERSION_PATTERN + r"\s*$",
|
||||
re.VERBOSE | re.IGNORECASE,
|
||||
)
|
||||
|
||||
def __init__(self, version):
|
||||
# Validate the version and parse it into pieces
|
||||
match = self._regex.search(version)
|
||||
if not match:
|
||||
raise InvalidVersion("Invalid version: '{0}'".format(version))
|
||||
|
||||
# Store the parsed out pieces of the version
|
||||
self._version = _Version(
|
||||
epoch=int(match.group("epoch")) if match.group("epoch") else 0,
|
||||
release=tuple(int(i) for i in match.group("release").split(".")),
|
||||
pre=_parse_letter_version(
|
||||
match.group("pre_l"),
|
||||
match.group("pre_n"),
|
||||
),
|
||||
post=_parse_letter_version(
|
||||
match.group("post_l"),
|
||||
match.group("post_n1") or match.group("post_n2"),
|
||||
),
|
||||
dev=_parse_letter_version(
|
||||
match.group("dev_l"),
|
||||
match.group("dev_n"),
|
||||
),
|
||||
local=_parse_local_version(match.group("local")),
|
||||
)
|
||||
|
||||
# Generate a key which will be used for sorting
|
||||
self._key = _cmpkey(
|
||||
self._version.epoch,
|
||||
self._version.release,
|
||||
self._version.pre,
|
||||
self._version.post,
|
||||
self._version.dev,
|
||||
self._version.local,
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
return "<Version({0})>".format(repr(str(self)))
|
||||
|
||||
def __str__(self):
|
||||
parts = []
|
||||
|
||||
# Epoch
|
||||
if self._version.epoch != 0:
|
||||
parts.append("{0}!".format(self._version.epoch))
|
||||
|
||||
# Release segment
|
||||
parts.append(".".join(str(x) for x in self._version.release))
|
||||
|
||||
# Pre-release
|
||||
if self._version.pre is not None:
|
||||
parts.append("".join(str(x) for x in self._version.pre))
|
||||
|
||||
# Post-release
|
||||
if self._version.post is not None:
|
||||
parts.append(".post{0}".format(self._version.post[1]))
|
||||
|
||||
# Development release
|
||||
if self._version.dev is not None:
|
||||
parts.append(".dev{0}".format(self._version.dev[1]))
|
||||
|
||||
# Local version segment
|
||||
if self._version.local is not None:
|
||||
parts.append(
|
||||
"+{0}".format(".".join(str(x) for x in self._version.local))
|
||||
)
|
||||
|
||||
return "".join(parts)
|
||||
|
||||
@property
|
||||
def public(self):
|
||||
return str(self).split("+", 1)[0]
|
||||
|
||||
@property
|
||||
def base_version(self):
|
||||
parts = []
|
||||
|
||||
# Epoch
|
||||
if self._version.epoch != 0:
|
||||
parts.append("{0}!".format(self._version.epoch))
|
||||
|
||||
# Release segment
|
||||
parts.append(".".join(str(x) for x in self._version.release))
|
||||
|
||||
return "".join(parts)
|
||||
|
||||
@property
|
||||
def local(self):
|
||||
version_string = str(self)
|
||||
if "+" in version_string:
|
||||
return version_string.split("+", 1)[1]
|
||||
|
||||
@property
|
||||
def is_prerelease(self):
|
||||
return bool(self._version.dev or self._version.pre)
|
||||
|
||||
@property
|
||||
def is_postrelease(self):
|
||||
return bool(self._version.post)
|
||||
|
||||
|
||||
def _parse_letter_version(letter, number):
|
||||
if letter:
|
||||
# We assume there is an implicit 0 in a pre-release if there is
|
||||
# no numeral associated with it.
|
||||
if number is None:
|
||||
number = 0
|
||||
|
||||
# We normalize any letters to their lower-case form
|
||||
letter = letter.lower()
|
||||
|
||||
# We consider some words to be alternate spellings of other words and
|
||||
# in those cases we want to normalize the spellings to our preferred
|
||||
# spelling.
|
||||
if letter == "alpha":
|
||||
letter = "a"
|
||||
elif letter == "beta":
|
||||
letter = "b"
|
||||
elif letter in ["c", "pre", "preview"]:
|
||||
letter = "rc"
|
||||
elif letter in ["rev", "r"]:
|
||||
letter = "post"
|
||||
|
||||
return letter, int(number)
|
||||
if not letter and number:
|
||||
# We assume that if we are given a number but not given a letter,
|
||||
# then this is using the implicit post release syntax (e.g., 1.0-1)
|
||||
letter = "post"
|
||||
|
||||
return letter, int(number)
|
||||
|
||||
|
||||
_local_version_seperators = re.compile(r"[\._-]")
|
||||
|
||||
|
||||
def _parse_local_version(local):
|
||||
"""
|
||||
Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
|
||||
"""
|
||||
if local is not None:
|
||||
return tuple(
|
||||
part.lower() if not part.isdigit() else int(part)
|
||||
for part in _local_version_seperators.split(local)
|
||||
)
|
||||
|
||||
|
||||
def _cmpkey(epoch, release, pre, post, dev, local):
|
||||
# When we compare a release version, we want to compare it with all of the
|
||||
# trailing zeros removed. So we'll use a reverse the list, drop all the now
|
||||
# leading zeros until we come to something non-zero, then take the rest,
|
||||
# re-reverse it back into the correct order, and make it a tuple and use
|
||||
# that for our sorting key.
|
||||
release = tuple(
|
||||
reversed(list(
|
||||
itertools.dropwhile(
|
||||
lambda x: x == 0,
|
||||
reversed(release),
|
||||
)
|
||||
))
|
||||
)
|
||||
|
||||
# We need to "trick" the sorting algorithm to put 1.0.dev0 before 1.0a0.
|
||||
# We'll do this by abusing the pre-segment, but we _only_ want to do this
|
||||
# if there is no pre- or a post-segment. If we have one of those, then
|
||||
# the normal sorting rules will handle this case correctly.
|
||||
if pre is None and post is None and dev is not None:
|
||||
pre = -Infinity
|
||||
# Versions without a pre-release (except as noted above) should sort after
|
||||
# those with one.
|
||||
elif pre is None:
|
||||
pre = Infinity
|
||||
|
||||
# Versions without a post-segment should sort before those with one.
|
||||
if post is None:
|
||||
post = -Infinity
|
||||
|
||||
# Versions without a development segment should sort after those with one.
|
||||
if dev is None:
|
||||
dev = Infinity
|
||||
|
||||
if local is None:
|
||||
# Versions without a local segment should sort before those with one.
|
||||
local = -Infinity
|
||||
else:
|
||||
# Versions with a local segment need that segment parsed to implement
|
||||
# the sorting rules in PEP440.
|
||||
# - Alphanumeric segments sort before numeric segments
|
||||
# - Alphanumeric segments sort lexicographically
|
||||
# - Numeric segments sort numerically
|
||||
# - Shorter versions sort before longer versions when the prefixes
|
||||
# match exactly
|
||||
local = tuple(
|
||||
(i, "") if isinstance(i, int) else (-Infinity, i)
|
||||
for i in local
|
||||
)
|
||||
|
||||
return epoch, release, pre, post, dev, local
|
||||
|
|
@ -0,0 +1,387 @@
|
|||
"""
|
||||
A NumPy sub-namespace that conforms to the Python array API standard.
|
||||
|
||||
This submodule accompanies NEP 47, which proposes its inclusion in NumPy. It
|
||||
is still considered experimental, and will issue a warning when imported.
|
||||
|
||||
This is a proof-of-concept namespace that wraps the corresponding NumPy
|
||||
functions to give a conforming implementation of the Python array API standard
|
||||
(https://data-apis.github.io/array-api/latest/). The standard is currently in
|
||||
an RFC phase and comments on it are both welcome and encouraged. Comments
|
||||
should be made either at https://github.com/data-apis/array-api or at
|
||||
https://github.com/data-apis/consortium-feedback/discussions.
|
||||
|
||||
NumPy already follows the proposed spec for the most part, so this module
|
||||
serves mostly as a thin wrapper around it. However, NumPy also implements a
|
||||
lot of behavior that is not included in the spec, so this serves as a
|
||||
restricted subset of the API. Only those functions that are part of the spec
|
||||
are included in this namespace, and all functions are given with the exact
|
||||
signature given in the spec, including the use of position-only arguments, and
|
||||
omitting any extra keyword arguments implemented by NumPy but not part of the
|
||||
spec. The behavior of some functions is also modified from the NumPy behavior
|
||||
to conform to the standard. Note that the underlying array object itself is
|
||||
wrapped in a wrapper Array() class, but is otherwise unchanged. This submodule
|
||||
is implemented in pure Python with no C extensions.
|
||||
|
||||
The array API spec is designed as a "minimal API subset" and explicitly allows
|
||||
libraries to include behaviors not specified by it. But users of this module
|
||||
that intend to write portable code should be aware that only those behaviors
|
||||
that are listed in the spec are guaranteed to be implemented across libraries.
|
||||
Consequently, the NumPy implementation was chosen to be both conforming and
|
||||
minimal, so that users can use this implementation of the array API namespace
|
||||
and be sure that behaviors that it defines will be available in conforming
|
||||
namespaces from other libraries.
|
||||
|
||||
A few notes about the current state of this submodule:
|
||||
|
||||
- There is a test suite that tests modules against the array API standard at
|
||||
https://github.com/data-apis/array-api-tests. The test suite is still a work
|
||||
in progress, but the existing tests pass on this module, with a few
|
||||
exceptions:
|
||||
|
||||
- DLPack support (see https://github.com/data-apis/array-api/pull/106) is
|
||||
not included here, as it requires a full implementation in NumPy proper
|
||||
first.
|
||||
|
||||
The test suite is not yet complete, and even the tests that exist are not
|
||||
guaranteed to give a comprehensive coverage of the spec. Therefore, when
|
||||
reviewing and using this submodule, you should refer to the standard
|
||||
documents themselves. There are some tests in numpy.array_api.tests, but
|
||||
they primarily focus on things that are not tested by the official array API
|
||||
test suite.
|
||||
|
||||
- There is a custom array object, numpy.array_api.Array, which is returned by
|
||||
all functions in this module. All functions in the array API namespace
|
||||
implicitly assume that they will only receive this object as input. The only
|
||||
way to create instances of this object is to use one of the array creation
|
||||
functions. It does not have a public constructor on the object itself. The
|
||||
object is a small wrapper class around numpy.ndarray. The main purpose of it
|
||||
is to restrict the namespace of the array object to only those dtypes and
|
||||
only those methods that are required by the spec, as well as to limit/change
|
||||
certain behavior that differs in the spec. In particular:
|
||||
|
||||
- The array API namespace does not have scalar objects, only 0-D arrays.
|
||||
Operations on Array that would create a scalar in NumPy create a 0-D
|
||||
array.
|
||||
|
||||
- Indexing: Only a subset of indices supported by NumPy are required by the
|
||||
spec. The Array object restricts indexing to only allow those types of
|
||||
indices that are required by the spec. See the docstring of the
|
||||
numpy.array_api.Array._validate_indices helper function for more
|
||||
information.
|
||||
|
||||
- Type promotion: Some type promotion rules are different in the spec. In
|
||||
particular, the spec does not have any value-based casting. The spec also
|
||||
does not require cross-kind casting, like integer -> floating-point. Only
|
||||
those promotions that are explicitly required by the array API
|
||||
specification are allowed in this module. See NEP 47 for more info.
|
||||
|
||||
- Functions do not automatically call asarray() on their input, and will not
|
||||
work if the input type is not Array. The exception is array creation
|
||||
functions, and Python operators on the Array object, which accept Python
|
||||
scalars of the same type as the array dtype.
|
||||
|
||||
- All functions include type annotations, corresponding to those given in the
|
||||
spec (see _typing.py for definitions of some custom types). These do not
|
||||
currently fully pass mypy due to some limitations in mypy.
|
||||
|
||||
- Dtype objects are just the NumPy dtype objects, e.g., float64 =
|
||||
np.dtype('float64'). The spec does not require any behavior on these dtype
|
||||
objects other than that they be accessible by name and be comparable by
|
||||
equality, but it was considered too much extra complexity to create custom
|
||||
objects to represent dtypes.
|
||||
|
||||
- All places where the implementations in this submodule are known to deviate
|
||||
from their corresponding functions in NumPy are marked with "# Note:"
|
||||
comments.
|
||||
|
||||
Still TODO in this module are:
|
||||
|
||||
- DLPack support for numpy.ndarray is still in progress. See
|
||||
https://github.com/numpy/numpy/pull/19083.
|
||||
|
||||
- The copy=False keyword argument to asarray() is not yet implemented. This
|
||||
requires support in numpy.asarray() first.
|
||||
|
||||
- Some functions are not yet fully tested in the array API test suite, and may
|
||||
require updates that are not yet known until the tests are written.
|
||||
|
||||
- The spec is still in an RFC phase and may still have minor updates, which
|
||||
will need to be reflected here.
|
||||
|
||||
- Complex number support in array API spec is planned but not yet finalized,
|
||||
as are the fft extension and certain linear algebra functions such as eig
|
||||
that require complex dtypes.
|
||||
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"The numpy.array_api submodule is still experimental. See NEP 47.", stacklevel=2
|
||||
)
|
||||
|
||||
__array_api_version__ = "2022.12"
|
||||
|
||||
__all__ = ["__array_api_version__"]
|
||||
|
||||
from ._constants import e, inf, nan, pi, newaxis
|
||||
|
||||
__all__ += ["e", "inf", "nan", "pi", "newaxis"]
|
||||
|
||||
from ._creation_functions import (
|
||||
asarray,
|
||||
arange,
|
||||
empty,
|
||||
empty_like,
|
||||
eye,
|
||||
from_dlpack,
|
||||
full,
|
||||
full_like,
|
||||
linspace,
|
||||
meshgrid,
|
||||
ones,
|
||||
ones_like,
|
||||
tril,
|
||||
triu,
|
||||
zeros,
|
||||
zeros_like,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"asarray",
|
||||
"arange",
|
||||
"empty",
|
||||
"empty_like",
|
||||
"eye",
|
||||
"from_dlpack",
|
||||
"full",
|
||||
"full_like",
|
||||
"linspace",
|
||||
"meshgrid",
|
||||
"ones",
|
||||
"ones_like",
|
||||
"tril",
|
||||
"triu",
|
||||
"zeros",
|
||||
"zeros_like",
|
||||
]
|
||||
|
||||
from ._data_type_functions import (
|
||||
astype,
|
||||
broadcast_arrays,
|
||||
broadcast_to,
|
||||
can_cast,
|
||||
finfo,
|
||||
isdtype,
|
||||
iinfo,
|
||||
result_type,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"astype",
|
||||
"broadcast_arrays",
|
||||
"broadcast_to",
|
||||
"can_cast",
|
||||
"finfo",
|
||||
"iinfo",
|
||||
"result_type",
|
||||
]
|
||||
|
||||
from ._dtypes import (
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
complex64,
|
||||
complex128,
|
||||
bool,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"int8",
|
||||
"int16",
|
||||
"int32",
|
||||
"int64",
|
||||
"uint8",
|
||||
"uint16",
|
||||
"uint32",
|
||||
"uint64",
|
||||
"float32",
|
||||
"float64",
|
||||
"bool",
|
||||
]
|
||||
|
||||
from ._elementwise_functions import (
|
||||
abs,
|
||||
acos,
|
||||
acosh,
|
||||
add,
|
||||
asin,
|
||||
asinh,
|
||||
atan,
|
||||
atan2,
|
||||
atanh,
|
||||
bitwise_and,
|
||||
bitwise_left_shift,
|
||||
bitwise_invert,
|
||||
bitwise_or,
|
||||
bitwise_right_shift,
|
||||
bitwise_xor,
|
||||
ceil,
|
||||
conj,
|
||||
cos,
|
||||
cosh,
|
||||
divide,
|
||||
equal,
|
||||
exp,
|
||||
expm1,
|
||||
floor,
|
||||
floor_divide,
|
||||
greater,
|
||||
greater_equal,
|
||||
imag,
|
||||
isfinite,
|
||||
isinf,
|
||||
isnan,
|
||||
less,
|
||||
less_equal,
|
||||
log,
|
||||
log1p,
|
||||
log2,
|
||||
log10,
|
||||
logaddexp,
|
||||
logical_and,
|
||||
logical_not,
|
||||
logical_or,
|
||||
logical_xor,
|
||||
multiply,
|
||||
negative,
|
||||
not_equal,
|
||||
positive,
|
||||
pow,
|
||||
real,
|
||||
remainder,
|
||||
round,
|
||||
sign,
|
||||
sin,
|
||||
sinh,
|
||||
square,
|
||||
sqrt,
|
||||
subtract,
|
||||
tan,
|
||||
tanh,
|
||||
trunc,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"abs",
|
||||
"acos",
|
||||
"acosh",
|
||||
"add",
|
||||
"asin",
|
||||
"asinh",
|
||||
"atan",
|
||||
"atan2",
|
||||
"atanh",
|
||||
"bitwise_and",
|
||||
"bitwise_left_shift",
|
||||
"bitwise_invert",
|
||||
"bitwise_or",
|
||||
"bitwise_right_shift",
|
||||
"bitwise_xor",
|
||||
"ceil",
|
||||
"cos",
|
||||
"cosh",
|
||||
"divide",
|
||||
"equal",
|
||||
"exp",
|
||||
"expm1",
|
||||
"floor",
|
||||
"floor_divide",
|
||||
"greater",
|
||||
"greater_equal",
|
||||
"isfinite",
|
||||
"isinf",
|
||||
"isnan",
|
||||
"less",
|
||||
"less_equal",
|
||||
"log",
|
||||
"log1p",
|
||||
"log2",
|
||||
"log10",
|
||||
"logaddexp",
|
||||
"logical_and",
|
||||
"logical_not",
|
||||
"logical_or",
|
||||
"logical_xor",
|
||||
"multiply",
|
||||
"negative",
|
||||
"not_equal",
|
||||
"positive",
|
||||
"pow",
|
||||
"remainder",
|
||||
"round",
|
||||
"sign",
|
||||
"sin",
|
||||
"sinh",
|
||||
"square",
|
||||
"sqrt",
|
||||
"subtract",
|
||||
"tan",
|
||||
"tanh",
|
||||
"trunc",
|
||||
]
|
||||
|
||||
from ._indexing_functions import take
|
||||
|
||||
__all__ += ["take"]
|
||||
|
||||
# linalg is an extension in the array API spec, which is a sub-namespace. Only
|
||||
# a subset of functions in it are imported into the top-level namespace.
|
||||
from . import linalg
|
||||
|
||||
__all__ += ["linalg"]
|
||||
|
||||
from .linalg import matmul, tensordot, matrix_transpose, vecdot
|
||||
|
||||
__all__ += ["matmul", "tensordot", "matrix_transpose", "vecdot"]
|
||||
|
||||
from ._manipulation_functions import (
|
||||
concat,
|
||||
expand_dims,
|
||||
flip,
|
||||
permute_dims,
|
||||
reshape,
|
||||
roll,
|
||||
squeeze,
|
||||
stack,
|
||||
)
|
||||
|
||||
__all__ += ["concat", "expand_dims", "flip", "permute_dims", "reshape", "roll", "squeeze", "stack"]
|
||||
|
||||
from ._searching_functions import argmax, argmin, nonzero, where
|
||||
|
||||
__all__ += ["argmax", "argmin", "nonzero", "where"]
|
||||
|
||||
from ._set_functions import unique_all, unique_counts, unique_inverse, unique_values
|
||||
|
||||
__all__ += ["unique_all", "unique_counts", "unique_inverse", "unique_values"]
|
||||
|
||||
from ._sorting_functions import argsort, sort
|
||||
|
||||
__all__ += ["argsort", "sort"]
|
||||
|
||||
from ._statistical_functions import max, mean, min, prod, std, sum, var
|
||||
|
||||
__all__ += ["max", "mean", "min", "prod", "std", "sum", "var"]
|
||||
|
||||
from ._utility_functions import all, any
|
||||
|
||||
__all__ += ["all", "any"]
|
||||
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,7 @@
|
|||
import numpy as np
|
||||
|
||||
e = np.e
|
||||
inf = np.inf
|
||||
nan = np.nan
|
||||
pi = np.pi
|
||||
newaxis = np.newaxis
|
||||
|
|
@ -0,0 +1,351 @@
|
|||
from __future__ import annotations
|
||||
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import (
|
||||
Array,
|
||||
Device,
|
||||
Dtype,
|
||||
NestedSequence,
|
||||
SupportsBufferProtocol,
|
||||
)
|
||||
from collections.abc import Sequence
|
||||
from ._dtypes import _all_dtypes
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _check_valid_dtype(dtype):
|
||||
# Note: Only spelling dtypes as the dtype objects is supported.
|
||||
|
||||
# We use this instead of "dtype in _all_dtypes" because the dtype objects
|
||||
# define equality with the sorts of things we want to disallow.
|
||||
for d in (None,) + _all_dtypes:
|
||||
if dtype is d:
|
||||
return
|
||||
raise ValueError("dtype must be one of the supported dtypes")
|
||||
|
||||
|
||||
def asarray(
|
||||
obj: Union[
|
||||
Array,
|
||||
bool,
|
||||
int,
|
||||
float,
|
||||
NestedSequence[bool | int | float],
|
||||
SupportsBufferProtocol,
|
||||
],
|
||||
/,
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
copy: Optional[Union[bool, np._CopyMode]] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# _array_object imports in this file are inside the functions to avoid
|
||||
# circular imports
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
if copy in (False, np._CopyMode.IF_NEEDED):
|
||||
# Note: copy=False is not yet implemented in np.asarray
|
||||
raise NotImplementedError("copy=False is not yet implemented")
|
||||
if isinstance(obj, Array):
|
||||
if dtype is not None and obj.dtype != dtype:
|
||||
copy = True
|
||||
if copy in (True, np._CopyMode.ALWAYS):
|
||||
return Array._new(np.array(obj._array, copy=True, dtype=dtype))
|
||||
return obj
|
||||
if dtype is None and isinstance(obj, int) and (obj > 2 ** 64 or obj < -(2 ** 63)):
|
||||
# Give a better error message in this case. NumPy would convert this
|
||||
# to an object array. TODO: This won't handle large integers in lists.
|
||||
raise OverflowError("Integer out of bounds for array dtypes")
|
||||
res = np.asarray(obj, dtype=dtype)
|
||||
return Array._new(res)
|
||||
|
||||
|
||||
def arange(
|
||||
start: Union[int, float],
|
||||
/,
|
||||
stop: Optional[Union[int, float]] = None,
|
||||
step: Union[int, float] = 1,
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype))
|
||||
|
||||
|
||||
def empty(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.empty(shape, dtype=dtype))
|
||||
|
||||
|
||||
def empty_like(
|
||||
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.empty_like(x._array, dtype=dtype))
|
||||
|
||||
|
||||
def eye(
|
||||
n_rows: int,
|
||||
n_cols: Optional[int] = None,
|
||||
/,
|
||||
*,
|
||||
k: int = 0,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype))
|
||||
|
||||
|
||||
def from_dlpack(x: object, /) -> Array:
|
||||
from ._array_object import Array
|
||||
|
||||
return Array._new(np.from_dlpack(x))
|
||||
|
||||
|
||||
def full(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
fill_value: Union[int, float],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.full <numpy.full>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
if isinstance(fill_value, Array) and fill_value.ndim == 0:
|
||||
fill_value = fill_value._array
|
||||
res = np.full(shape, fill_value, dtype=dtype)
|
||||
if res.dtype not in _all_dtypes:
|
||||
# This will happen if the fill value is not something that NumPy
|
||||
# coerces to one of the acceptable dtypes.
|
||||
raise TypeError("Invalid input to full")
|
||||
return Array._new(res)
|
||||
|
||||
|
||||
def full_like(
|
||||
x: Array,
|
||||
/,
|
||||
fill_value: Union[int, float],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
res = np.full_like(x._array, fill_value, dtype=dtype)
|
||||
if res.dtype not in _all_dtypes:
|
||||
# This will happen if the fill value is not something that NumPy
|
||||
# coerces to one of the acceptable dtypes.
|
||||
raise TypeError("Invalid input to full_like")
|
||||
return Array._new(res)
|
||||
|
||||
|
||||
def linspace(
|
||||
start: Union[int, float],
|
||||
stop: Union[int, float],
|
||||
/,
|
||||
num: int,
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
endpoint: bool = True,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint))
|
||||
|
||||
|
||||
def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
# Note: unlike np.meshgrid, only inputs with all the same dtype are
|
||||
# allowed
|
||||
|
||||
if len({a.dtype for a in arrays}) > 1:
|
||||
raise ValueError("meshgrid inputs must all have the same dtype")
|
||||
|
||||
return [
|
||||
Array._new(array)
|
||||
for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)
|
||||
]
|
||||
|
||||
|
||||
def ones(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.ones(shape, dtype=dtype))
|
||||
|
||||
|
||||
def ones_like(
|
||||
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.ones_like(x._array, dtype=dtype))
|
||||
|
||||
|
||||
def tril(x: Array, /, *, k: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.tril <numpy.tril>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
if x.ndim < 2:
|
||||
# Note: Unlike np.tril, x must be at least 2-D
|
||||
raise ValueError("x must be at least 2-dimensional for tril")
|
||||
return Array._new(np.tril(x._array, k=k))
|
||||
|
||||
|
||||
def triu(x: Array, /, *, k: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.triu <numpy.triu>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
if x.ndim < 2:
|
||||
# Note: Unlike np.triu, x must be at least 2-D
|
||||
raise ValueError("x must be at least 2-dimensional for triu")
|
||||
return Array._new(np.triu(x._array, k=k))
|
||||
|
||||
|
||||
def zeros(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.zeros(shape, dtype=dtype))
|
||||
|
||||
|
||||
def zeros_like(
|
||||
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.zeros_like(x._array, dtype=dtype))
|
||||
|
|
@ -0,0 +1,197 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._dtypes import (
|
||||
_all_dtypes,
|
||||
_boolean_dtypes,
|
||||
_signed_integer_dtypes,
|
||||
_unsigned_integer_dtypes,
|
||||
_integer_dtypes,
|
||||
_real_floating_dtypes,
|
||||
_complex_floating_dtypes,
|
||||
_numeric_dtypes,
|
||||
_result_type,
|
||||
)
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, List, Tuple, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import Dtype
|
||||
from collections.abc import Sequence
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Note: astype is a function, not an array method as in NumPy.
|
||||
def astype(x: Array, dtype: Dtype, /, *, copy: bool = True) -> Array:
|
||||
if not copy and dtype == x.dtype:
|
||||
return x
|
||||
return Array._new(x._array.astype(dtype=dtype, copy=copy))
|
||||
|
||||
|
||||
def broadcast_arrays(*arrays: Array) -> List[Array]:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.broadcast_arrays <numpy.broadcast_arrays>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
return [
|
||||
Array._new(array) for array in np.broadcast_arrays(*[a._array for a in arrays])
|
||||
]
|
||||
|
||||
|
||||
def broadcast_to(x: Array, /, shape: Tuple[int, ...]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.broadcast_to <numpy.broadcast_to>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
return Array._new(np.broadcast_to(x._array, shape))
|
||||
|
||||
|
||||
def can_cast(from_: Union[Dtype, Array], to: Dtype, /) -> bool:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.can_cast <numpy.can_cast>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if isinstance(from_, Array):
|
||||
from_ = from_.dtype
|
||||
elif from_ not in _all_dtypes:
|
||||
raise TypeError(f"{from_=}, but should be an array_api array or dtype")
|
||||
if to not in _all_dtypes:
|
||||
raise TypeError(f"{to=}, but should be a dtype")
|
||||
# Note: We avoid np.can_cast() as it has discrepancies with the array API,
|
||||
# since NumPy allows cross-kind casting (e.g., NumPy allows bool -> int8).
|
||||
# See https://github.com/numpy/numpy/issues/20870
|
||||
try:
|
||||
# We promote `from_` and `to` together. We then check if the promoted
|
||||
# dtype is `to`, which indicates if `from_` can (up)cast to `to`.
|
||||
dtype = _result_type(from_, to)
|
||||
return to == dtype
|
||||
except TypeError:
|
||||
# _result_type() raises if the dtypes don't promote together
|
||||
return False
|
||||
|
||||
|
||||
# These are internal objects for the return types of finfo and iinfo, since
|
||||
# the NumPy versions contain extra data that isn't part of the spec.
|
||||
@dataclass
|
||||
class finfo_object:
|
||||
bits: int
|
||||
# Note: The types of the float data here are float, whereas in NumPy they
|
||||
# are scalars of the corresponding float dtype.
|
||||
eps: float
|
||||
max: float
|
||||
min: float
|
||||
smallest_normal: float
|
||||
dtype: Dtype
|
||||
|
||||
|
||||
@dataclass
|
||||
class iinfo_object:
|
||||
bits: int
|
||||
max: int
|
||||
min: int
|
||||
dtype: Dtype
|
||||
|
||||
|
||||
def finfo(type: Union[Dtype, Array], /) -> finfo_object:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.finfo <numpy.finfo>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
fi = np.finfo(type)
|
||||
# Note: The types of the float data here are float, whereas in NumPy they
|
||||
# are scalars of the corresponding float dtype.
|
||||
return finfo_object(
|
||||
fi.bits,
|
||||
float(fi.eps),
|
||||
float(fi.max),
|
||||
float(fi.min),
|
||||
float(fi.smallest_normal),
|
||||
fi.dtype,
|
||||
)
|
||||
|
||||
|
||||
def iinfo(type: Union[Dtype, Array], /) -> iinfo_object:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.iinfo <numpy.iinfo>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
ii = np.iinfo(type)
|
||||
return iinfo_object(ii.bits, ii.max, ii.min, ii.dtype)
|
||||
|
||||
|
||||
# Note: isdtype is a new function from the 2022.12 array API specification.
|
||||
def isdtype(
|
||||
dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]]
|
||||
) -> bool:
|
||||
"""
|
||||
Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
|
||||
|
||||
See
|
||||
https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
|
||||
for more details
|
||||
"""
|
||||
if isinstance(kind, tuple):
|
||||
# Disallow nested tuples
|
||||
if any(isinstance(k, tuple) for k in kind):
|
||||
raise TypeError("'kind' must be a dtype, str, or tuple of dtypes and strs")
|
||||
return any(isdtype(dtype, k) for k in kind)
|
||||
elif isinstance(kind, str):
|
||||
if kind == 'bool':
|
||||
return dtype in _boolean_dtypes
|
||||
elif kind == 'signed integer':
|
||||
return dtype in _signed_integer_dtypes
|
||||
elif kind == 'unsigned integer':
|
||||
return dtype in _unsigned_integer_dtypes
|
||||
elif kind == 'integral':
|
||||
return dtype in _integer_dtypes
|
||||
elif kind == 'real floating':
|
||||
return dtype in _real_floating_dtypes
|
||||
elif kind == 'complex floating':
|
||||
return dtype in _complex_floating_dtypes
|
||||
elif kind == 'numeric':
|
||||
return dtype in _numeric_dtypes
|
||||
else:
|
||||
raise ValueError(f"Unrecognized data type kind: {kind!r}")
|
||||
elif kind in _all_dtypes:
|
||||
return dtype == kind
|
||||
else:
|
||||
raise TypeError(f"'kind' must be a dtype, str, or tuple of dtypes and strs, not {type(kind).__name__}")
|
||||
|
||||
def result_type(*arrays_and_dtypes: Union[Array, Dtype]) -> Dtype:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.result_type <numpy.result_type>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: we use a custom implementation that gives only the type promotions
|
||||
# required by the spec rather than using np.result_type. NumPy implements
|
||||
# too many extra type promotions like int64 + uint64 -> float64, and does
|
||||
# value-based casting on scalar arrays.
|
||||
A = []
|
||||
for a in arrays_and_dtypes:
|
||||
if isinstance(a, Array):
|
||||
a = a.dtype
|
||||
elif isinstance(a, np.ndarray) or a not in _all_dtypes:
|
||||
raise TypeError("result_type() inputs must be array_api arrays or dtypes")
|
||||
A.append(a)
|
||||
|
||||
if len(A) == 0:
|
||||
raise ValueError("at least one array or dtype is required")
|
||||
elif len(A) == 1:
|
||||
return A[0]
|
||||
else:
|
||||
t = A[0]
|
||||
for t2 in A[1:]:
|
||||
t = _result_type(t, t2)
|
||||
return t
|
||||
|
|
@ -0,0 +1,180 @@
|
|||
import numpy as np
|
||||
|
||||
# Note: we use dtype objects instead of dtype classes. The spec does not
|
||||
# require any behavior on dtypes other than equality.
|
||||
int8 = np.dtype("int8")
|
||||
int16 = np.dtype("int16")
|
||||
int32 = np.dtype("int32")
|
||||
int64 = np.dtype("int64")
|
||||
uint8 = np.dtype("uint8")
|
||||
uint16 = np.dtype("uint16")
|
||||
uint32 = np.dtype("uint32")
|
||||
uint64 = np.dtype("uint64")
|
||||
float32 = np.dtype("float32")
|
||||
float64 = np.dtype("float64")
|
||||
complex64 = np.dtype("complex64")
|
||||
complex128 = np.dtype("complex128")
|
||||
# Note: This name is changed
|
||||
bool = np.dtype("bool")
|
||||
|
||||
_all_dtypes = (
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
complex64,
|
||||
complex128,
|
||||
bool,
|
||||
)
|
||||
_boolean_dtypes = (bool,)
|
||||
_real_floating_dtypes = (float32, float64)
|
||||
_floating_dtypes = (float32, float64, complex64, complex128)
|
||||
_complex_floating_dtypes = (complex64, complex128)
|
||||
_integer_dtypes = (int8, int16, int32, int64, uint8, uint16, uint32, uint64)
|
||||
_signed_integer_dtypes = (int8, int16, int32, int64)
|
||||
_unsigned_integer_dtypes = (uint8, uint16, uint32, uint64)
|
||||
_integer_or_boolean_dtypes = (
|
||||
bool,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
)
|
||||
_real_numeric_dtypes = (
|
||||
float32,
|
||||
float64,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
)
|
||||
_numeric_dtypes = (
|
||||
float32,
|
||||
float64,
|
||||
complex64,
|
||||
complex128,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
)
|
||||
|
||||
_dtype_categories = {
|
||||
"all": _all_dtypes,
|
||||
"real numeric": _real_numeric_dtypes,
|
||||
"numeric": _numeric_dtypes,
|
||||
"integer": _integer_dtypes,
|
||||
"integer or boolean": _integer_or_boolean_dtypes,
|
||||
"boolean": _boolean_dtypes,
|
||||
"real floating-point": _floating_dtypes,
|
||||
"complex floating-point": _complex_floating_dtypes,
|
||||
"floating-point": _floating_dtypes,
|
||||
}
|
||||
|
||||
|
||||
# Note: the spec defines a restricted type promotion table compared to NumPy.
|
||||
# In particular, cross-kind promotions like integer + float or boolean +
|
||||
# integer are not allowed, even for functions that accept both kinds.
|
||||
# Additionally, NumPy promotes signed integer + uint64 to float64, but this
|
||||
# promotion is not allowed here. To be clear, Python scalar int objects are
|
||||
# allowed to promote to floating-point dtypes, but only in array operators
|
||||
# (see Array._promote_scalar) method in _array_object.py.
|
||||
_promotion_table = {
|
||||
(int8, int8): int8,
|
||||
(int8, int16): int16,
|
||||
(int8, int32): int32,
|
||||
(int8, int64): int64,
|
||||
(int16, int8): int16,
|
||||
(int16, int16): int16,
|
||||
(int16, int32): int32,
|
||||
(int16, int64): int64,
|
||||
(int32, int8): int32,
|
||||
(int32, int16): int32,
|
||||
(int32, int32): int32,
|
||||
(int32, int64): int64,
|
||||
(int64, int8): int64,
|
||||
(int64, int16): int64,
|
||||
(int64, int32): int64,
|
||||
(int64, int64): int64,
|
||||
(uint8, uint8): uint8,
|
||||
(uint8, uint16): uint16,
|
||||
(uint8, uint32): uint32,
|
||||
(uint8, uint64): uint64,
|
||||
(uint16, uint8): uint16,
|
||||
(uint16, uint16): uint16,
|
||||
(uint16, uint32): uint32,
|
||||
(uint16, uint64): uint64,
|
||||
(uint32, uint8): uint32,
|
||||
(uint32, uint16): uint32,
|
||||
(uint32, uint32): uint32,
|
||||
(uint32, uint64): uint64,
|
||||
(uint64, uint8): uint64,
|
||||
(uint64, uint16): uint64,
|
||||
(uint64, uint32): uint64,
|
||||
(uint64, uint64): uint64,
|
||||
(int8, uint8): int16,
|
||||
(int8, uint16): int32,
|
||||
(int8, uint32): int64,
|
||||
(int16, uint8): int16,
|
||||
(int16, uint16): int32,
|
||||
(int16, uint32): int64,
|
||||
(int32, uint8): int32,
|
||||
(int32, uint16): int32,
|
||||
(int32, uint32): int64,
|
||||
(int64, uint8): int64,
|
||||
(int64, uint16): int64,
|
||||
(int64, uint32): int64,
|
||||
(uint8, int8): int16,
|
||||
(uint16, int8): int32,
|
||||
(uint32, int8): int64,
|
||||
(uint8, int16): int16,
|
||||
(uint16, int16): int32,
|
||||
(uint32, int16): int64,
|
||||
(uint8, int32): int32,
|
||||
(uint16, int32): int32,
|
||||
(uint32, int32): int64,
|
||||
(uint8, int64): int64,
|
||||
(uint16, int64): int64,
|
||||
(uint32, int64): int64,
|
||||
(float32, float32): float32,
|
||||
(float32, float64): float64,
|
||||
(float64, float32): float64,
|
||||
(float64, float64): float64,
|
||||
(complex64, complex64): complex64,
|
||||
(complex64, complex128): complex128,
|
||||
(complex128, complex64): complex128,
|
||||
(complex128, complex128): complex128,
|
||||
(float32, complex64): complex64,
|
||||
(float32, complex128): complex128,
|
||||
(float64, complex64): complex128,
|
||||
(float64, complex128): complex128,
|
||||
(complex64, float32): complex64,
|
||||
(complex64, float64): complex128,
|
||||
(complex128, float32): complex128,
|
||||
(complex128, float64): complex128,
|
||||
(bool, bool): bool,
|
||||
}
|
||||
|
||||
|
||||
def _result_type(type1, type2):
|
||||
if (type1, type2) in _promotion_table:
|
||||
return _promotion_table[type1, type2]
|
||||
raise TypeError(f"{type1} and {type2} cannot be type promoted together")
|
||||
|
|
@ -0,0 +1,765 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._dtypes import (
|
||||
_boolean_dtypes,
|
||||
_floating_dtypes,
|
||||
_real_floating_dtypes,
|
||||
_complex_floating_dtypes,
|
||||
_integer_dtypes,
|
||||
_integer_or_boolean_dtypes,
|
||||
_real_numeric_dtypes,
|
||||
_numeric_dtypes,
|
||||
_result_type,
|
||||
)
|
||||
from ._array_object import Array
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def abs(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in abs")
|
||||
return Array._new(np.abs(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def acos(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in acos")
|
||||
return Array._new(np.arccos(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def acosh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in acosh")
|
||||
return Array._new(np.arccosh(x._array))
|
||||
|
||||
|
||||
def add(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.add <numpy.add>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in add")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.add(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def asin(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in asin")
|
||||
return Array._new(np.arcsin(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def asinh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in asinh")
|
||||
return Array._new(np.arcsinh(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def atan(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in atan")
|
||||
return Array._new(np.arctan(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def atan2(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
|
||||
raise TypeError("Only real floating-point dtypes are allowed in atan2")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.arctan2(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def atanh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in atanh")
|
||||
return Array._new(np.arctanh(x._array))
|
||||
|
||||
|
||||
def bitwise_and(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if (
|
||||
x1.dtype not in _integer_or_boolean_dtypes
|
||||
or x2.dtype not in _integer_or_boolean_dtypes
|
||||
):
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_and")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.bitwise_and(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def bitwise_left_shift(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
|
||||
raise TypeError("Only integer dtypes are allowed in bitwise_left_shift")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
# Note: bitwise_left_shift is only defined for x2 nonnegative.
|
||||
if np.any(x2._array < 0):
|
||||
raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
|
||||
return Array._new(np.left_shift(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def bitwise_invert(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _integer_or_boolean_dtypes:
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert")
|
||||
return Array._new(np.invert(x._array))
|
||||
|
||||
|
||||
def bitwise_or(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if (
|
||||
x1.dtype not in _integer_or_boolean_dtypes
|
||||
or x2.dtype not in _integer_or_boolean_dtypes
|
||||
):
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_or")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.bitwise_or(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def bitwise_right_shift(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
|
||||
raise TypeError("Only integer dtypes are allowed in bitwise_right_shift")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
# Note: bitwise_right_shift is only defined for x2 nonnegative.
|
||||
if np.any(x2._array < 0):
|
||||
raise ValueError("bitwise_right_shift(x1, x2) is only defined for x2 >= 0")
|
||||
return Array._new(np.right_shift(x1._array, x2._array))
|
||||
|
||||
|
||||
def bitwise_xor(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if (
|
||||
x1.dtype not in _integer_or_boolean_dtypes
|
||||
or x2.dtype not in _integer_or_boolean_dtypes
|
||||
):
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_xor")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.bitwise_xor(x1._array, x2._array))
|
||||
|
||||
|
||||
def ceil(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in ceil")
|
||||
if x.dtype in _integer_dtypes:
|
||||
# Note: The return dtype of ceil is the same as the input
|
||||
return x
|
||||
return Array._new(np.ceil(x._array))
|
||||
|
||||
|
||||
def conj(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.conj <numpy.conj>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _complex_floating_dtypes:
|
||||
raise TypeError("Only complex floating-point dtypes are allowed in conj")
|
||||
return Array._new(np.conj(x))
|
||||
|
||||
|
||||
def cos(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in cos")
|
||||
return Array._new(np.cos(x._array))
|
||||
|
||||
|
||||
def cosh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in cosh")
|
||||
return Array._new(np.cosh(x._array))
|
||||
|
||||
|
||||
def divide(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in divide")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.divide(x1._array, x2._array))
|
||||
|
||||
|
||||
def equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def exp(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in exp")
|
||||
return Array._new(np.exp(x._array))
|
||||
|
||||
|
||||
def expm1(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in expm1")
|
||||
return Array._new(np.expm1(x._array))
|
||||
|
||||
|
||||
def floor(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in floor")
|
||||
if x.dtype in _integer_dtypes:
|
||||
# Note: The return dtype of floor is the same as the input
|
||||
return x
|
||||
return Array._new(np.floor(x._array))
|
||||
|
||||
|
||||
def floor_divide(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in floor_divide")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.floor_divide(x1._array, x2._array))
|
||||
|
||||
|
||||
def greater(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in greater")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.greater(x1._array, x2._array))
|
||||
|
||||
|
||||
def greater_equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in greater_equal")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.greater_equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def imag(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.imag <numpy.imag>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _complex_floating_dtypes:
|
||||
raise TypeError("Only complex floating-point dtypes are allowed in imag")
|
||||
return Array._new(np.imag(x))
|
||||
|
||||
|
||||
def isfinite(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in isfinite")
|
||||
return Array._new(np.isfinite(x._array))
|
||||
|
||||
|
||||
def isinf(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in isinf")
|
||||
return Array._new(np.isinf(x._array))
|
||||
|
||||
|
||||
def isnan(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in isnan")
|
||||
return Array._new(np.isnan(x._array))
|
||||
|
||||
|
||||
def less(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.less <numpy.less>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in less")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.less(x1._array, x2._array))
|
||||
|
||||
|
||||
def less_equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in less_equal")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.less_equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def log(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log <numpy.log>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log")
|
||||
return Array._new(np.log(x._array))
|
||||
|
||||
|
||||
def log1p(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log1p")
|
||||
return Array._new(np.log1p(x._array))
|
||||
|
||||
|
||||
def log2(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log2")
|
||||
return Array._new(np.log2(x._array))
|
||||
|
||||
|
||||
def log10(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log10")
|
||||
return Array._new(np.log10(x._array))
|
||||
|
||||
|
||||
def logaddexp(x1: Array, x2: Array) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
|
||||
raise TypeError("Only real floating-point dtypes are allowed in logaddexp")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logaddexp(x1._array, x2._array))
|
||||
|
||||
|
||||
def logical_and(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_and")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logical_and(x1._array, x2._array))
|
||||
|
||||
|
||||
def logical_not(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_not")
|
||||
return Array._new(np.logical_not(x._array))
|
||||
|
||||
|
||||
def logical_or(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_or")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logical_or(x1._array, x2._array))
|
||||
|
||||
|
||||
def logical_xor(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_xor")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logical_xor(x1._array, x2._array))
|
||||
|
||||
|
||||
def multiply(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in multiply")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.multiply(x1._array, x2._array))
|
||||
|
||||
|
||||
def negative(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in negative")
|
||||
return Array._new(np.negative(x._array))
|
||||
|
||||
|
||||
def not_equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.not_equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def positive(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in positive")
|
||||
return Array._new(np.positive(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def pow(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.power <numpy.power>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in pow")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.power(x1._array, x2._array))
|
||||
|
||||
|
||||
def real(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.real <numpy.real>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _complex_floating_dtypes:
|
||||
raise TypeError("Only complex floating-point dtypes are allowed in real")
|
||||
return Array._new(np.real(x))
|
||||
|
||||
|
||||
def remainder(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in remainder")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.remainder(x1._array, x2._array))
|
||||
|
||||
|
||||
def round(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.round <numpy.round>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in round")
|
||||
return Array._new(np.round(x._array))
|
||||
|
||||
|
||||
def sign(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in sign")
|
||||
return Array._new(np.sign(x._array))
|
||||
|
||||
|
||||
def sin(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in sin")
|
||||
return Array._new(np.sin(x._array))
|
||||
|
||||
|
||||
def sinh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in sinh")
|
||||
return Array._new(np.sinh(x._array))
|
||||
|
||||
|
||||
def square(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.square <numpy.square>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in square")
|
||||
return Array._new(np.square(x._array))
|
||||
|
||||
|
||||
def sqrt(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in sqrt")
|
||||
return Array._new(np.sqrt(x._array))
|
||||
|
||||
|
||||
def subtract(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in subtract")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.subtract(x1._array, x2._array))
|
||||
|
||||
|
||||
def tan(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in tan")
|
||||
return Array._new(np.tan(x._array))
|
||||
|
||||
|
||||
def tanh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in tanh")
|
||||
return Array._new(np.tanh(x._array))
|
||||
|
||||
|
||||
def trunc(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in trunc")
|
||||
if x.dtype in _integer_dtypes:
|
||||
# Note: The return dtype of trunc is the same as the input
|
||||
return x
|
||||
return Array._new(np.trunc(x._array))
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._dtypes import _integer_dtypes
|
||||
|
||||
import numpy as np
|
||||
|
||||
def take(x: Array, indices: Array, /, *, axis: Optional[int] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.take <numpy.take>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if axis is None and x.ndim != 1:
|
||||
raise ValueError("axis must be specified when ndim > 1")
|
||||
if indices.dtype not in _integer_dtypes:
|
||||
raise TypeError("Only integer dtypes are allowed in indexing")
|
||||
if indices.ndim != 1:
|
||||
raise ValueError("Only 1-dim indices array is supported")
|
||||
return Array._new(np.take(x._array, indices._array, axis=axis))
|
||||
|
|
@ -0,0 +1,112 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._data_type_functions import result_type
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Note: the function name is different here
|
||||
def concat(
|
||||
arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: Optional[int] = 0
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.concatenate <numpy.concatenate>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: Casting rules here are different from the np.concatenate default
|
||||
# (no for scalars with axis=None, no cross-kind casting)
|
||||
dtype = result_type(*arrays)
|
||||
arrays = tuple(a._array for a in arrays)
|
||||
return Array._new(np.concatenate(arrays, axis=axis, dtype=dtype))
|
||||
|
||||
|
||||
def expand_dims(x: Array, /, *, axis: int) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.expand_dims <numpy.expand_dims>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.expand_dims(x._array, axis))
|
||||
|
||||
|
||||
def flip(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.flip <numpy.flip>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.flip(x._array, axis=axis))
|
||||
|
||||
|
||||
# Note: The function name is different here (see also matrix_transpose).
|
||||
# Unlike transpose(), the axes argument is required.
|
||||
def permute_dims(x: Array, /, axes: Tuple[int, ...]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.transpose(x._array, axes))
|
||||
|
||||
|
||||
# Note: the optional argument is called 'shape', not 'newshape'
|
||||
def reshape(x: Array,
|
||||
/,
|
||||
shape: Tuple[int, ...],
|
||||
*,
|
||||
copy: Optional[Bool] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.reshape <numpy.reshape>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
|
||||
data = x._array
|
||||
if copy:
|
||||
data = np.copy(data)
|
||||
|
||||
reshaped = np.reshape(data, shape)
|
||||
|
||||
if copy is False and not np.shares_memory(data, reshaped):
|
||||
raise AttributeError("Incompatible shape for in-place modification.")
|
||||
|
||||
return Array._new(reshaped)
|
||||
|
||||
|
||||
def roll(
|
||||
x: Array,
|
||||
/,
|
||||
shift: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.roll <numpy.roll>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.roll(x._array, shift, axis=axis))
|
||||
|
||||
|
||||
def squeeze(x: Array, /, axis: Union[int, Tuple[int, ...]]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.squeeze <numpy.squeeze>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.squeeze(x._array, axis=axis))
|
||||
|
||||
|
||||
def stack(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.stack <numpy.stack>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
result_type(*arrays)
|
||||
arrays = tuple(a._array for a in arrays)
|
||||
return Array._new(np.stack(arrays, axis=axis))
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._dtypes import _result_type, _real_numeric_dtypes
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def argmax(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.argmax <numpy.argmax>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in argmax")
|
||||
return Array._new(np.asarray(np.argmax(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
||||
|
||||
def argmin(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.argmin <numpy.argmin>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in argmin")
|
||||
return Array._new(np.asarray(np.argmin(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
||||
|
||||
def nonzero(x: Array, /) -> Tuple[Array, ...]:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.nonzero <numpy.nonzero>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return tuple(Array._new(i) for i in np.nonzero(x._array))
|
||||
|
||||
|
||||
def where(condition: Array, x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.where <numpy.where>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.where(condition._array, x1._array, x2._array))
|
||||
|
|
@ -0,0 +1,106 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
|
||||
from typing import NamedTuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Note: np.unique() is split into four functions in the array API:
|
||||
# unique_all, unique_counts, unique_inverse, and unique_values (this is done
|
||||
# to remove polymorphic return types).
|
||||
|
||||
# Note: The various unique() functions are supposed to return multiple NaNs.
|
||||
# This does not match the NumPy behavior, however, this is currently left as a
|
||||
# TODO in this implementation as this behavior may be reverted in np.unique().
|
||||
# See https://github.com/numpy/numpy/issues/20326.
|
||||
|
||||
# Note: The functions here return a namedtuple (np.unique() returns a normal
|
||||
# tuple).
|
||||
|
||||
class UniqueAllResult(NamedTuple):
|
||||
values: Array
|
||||
indices: Array
|
||||
inverse_indices: Array
|
||||
counts: Array
|
||||
|
||||
|
||||
class UniqueCountsResult(NamedTuple):
|
||||
values: Array
|
||||
counts: Array
|
||||
|
||||
|
||||
class UniqueInverseResult(NamedTuple):
|
||||
values: Array
|
||||
inverse_indices: Array
|
||||
|
||||
|
||||
def unique_all(x: Array, /) -> UniqueAllResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
values, indices, inverse_indices, counts = np.unique(
|
||||
x._array,
|
||||
return_counts=True,
|
||||
return_index=True,
|
||||
return_inverse=True,
|
||||
equal_nan=False,
|
||||
)
|
||||
# np.unique() flattens inverse indices, but they need to share x's shape
|
||||
# See https://github.com/numpy/numpy/issues/20638
|
||||
inverse_indices = inverse_indices.reshape(x.shape)
|
||||
return UniqueAllResult(
|
||||
Array._new(values),
|
||||
Array._new(indices),
|
||||
Array._new(inverse_indices),
|
||||
Array._new(counts),
|
||||
)
|
||||
|
||||
|
||||
def unique_counts(x: Array, /) -> UniqueCountsResult:
|
||||
res = np.unique(
|
||||
x._array,
|
||||
return_counts=True,
|
||||
return_index=False,
|
||||
return_inverse=False,
|
||||
equal_nan=False,
|
||||
)
|
||||
|
||||
return UniqueCountsResult(*[Array._new(i) for i in res])
|
||||
|
||||
|
||||
def unique_inverse(x: Array, /) -> UniqueInverseResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
values, inverse_indices = np.unique(
|
||||
x._array,
|
||||
return_counts=False,
|
||||
return_index=False,
|
||||
return_inverse=True,
|
||||
equal_nan=False,
|
||||
)
|
||||
# np.unique() flattens inverse indices, but they need to share x's shape
|
||||
# See https://github.com/numpy/numpy/issues/20638
|
||||
inverse_indices = inverse_indices.reshape(x.shape)
|
||||
return UniqueInverseResult(Array._new(values), Array._new(inverse_indices))
|
||||
|
||||
|
||||
def unique_values(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
res = np.unique(
|
||||
x._array,
|
||||
return_counts=False,
|
||||
return_index=False,
|
||||
return_inverse=False,
|
||||
equal_nan=False,
|
||||
)
|
||||
return Array._new(res)
|
||||
|
|
@ -0,0 +1,54 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._dtypes import _real_numeric_dtypes
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Note: the descending keyword argument is new in this function
|
||||
def argsort(
|
||||
x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.argsort <numpy.argsort>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in argsort")
|
||||
# Note: this keyword argument is different, and the default is different.
|
||||
kind = "stable" if stable else "quicksort"
|
||||
if not descending:
|
||||
res = np.argsort(x._array, axis=axis, kind=kind)
|
||||
else:
|
||||
# As NumPy has no native descending sort, we imitate it here. Note that
|
||||
# simply flipping the results of np.argsort(x._array, ...) would not
|
||||
# respect the relative order like it would in native descending sorts.
|
||||
res = np.flip(
|
||||
np.argsort(np.flip(x._array, axis=axis), axis=axis, kind=kind),
|
||||
axis=axis,
|
||||
)
|
||||
# Rely on flip()/argsort() to validate axis
|
||||
normalised_axis = axis if axis >= 0 else x.ndim + axis
|
||||
max_i = x.shape[normalised_axis] - 1
|
||||
res = max_i - res
|
||||
return Array._new(res)
|
||||
|
||||
# Note: the descending keyword argument is new in this function
|
||||
def sort(
|
||||
x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sort <numpy.sort>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in sort")
|
||||
# Note: this keyword argument is different, and the default is different.
|
||||
kind = "stable" if stable else "quicksort"
|
||||
res = np.sort(x._array, axis=axis, kind=kind)
|
||||
if descending:
|
||||
res = np.flip(res, axis=axis)
|
||||
return Array._new(res)
|
||||
|
|
@ -0,0 +1,122 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._dtypes import (
|
||||
_real_floating_dtypes,
|
||||
_real_numeric_dtypes,
|
||||
_numeric_dtypes,
|
||||
)
|
||||
from ._array_object import Array
|
||||
from ._dtypes import float32, float64, complex64, complex128
|
||||
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import Dtype
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def max(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in max")
|
||||
return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def mean(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _real_floating_dtypes:
|
||||
raise TypeError("Only real floating-point dtypes are allowed in mean")
|
||||
return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def min(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _real_numeric_dtypes:
|
||||
raise TypeError("Only real numeric dtypes are allowed in min")
|
||||
return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def prod(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
dtype: Optional[Dtype] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in prod")
|
||||
# Note: sum() and prod() always upcast for dtype=None. `np.prod` does that
|
||||
# for integers, but not for float32 or complex64, so we need to
|
||||
# special-case it here
|
||||
if dtype is None:
|
||||
if x.dtype == float32:
|
||||
dtype = float64
|
||||
elif x.dtype == complex64:
|
||||
dtype = complex128
|
||||
return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def std(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
correction: Union[int, float] = 0.0,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
# Note: the keyword argument correction is different here
|
||||
if x.dtype not in _real_floating_dtypes:
|
||||
raise TypeError("Only real floating-point dtypes are allowed in std")
|
||||
return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
|
||||
|
||||
|
||||
def sum(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
dtype: Optional[Dtype] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in sum")
|
||||
# Note: sum() and prod() always upcast for dtype=None. `np.sum` does that
|
||||
# for integers, but not for float32 or complex64, so we need to
|
||||
# special-case it here
|
||||
if dtype is None:
|
||||
if x.dtype == float32:
|
||||
dtype = float64
|
||||
elif x.dtype == complex64:
|
||||
dtype = complex128
|
||||
return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
|
||||
|
||||
|
||||
def var(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
correction: Union[int, float] = 0.0,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
# Note: the keyword argument correction is different here
|
||||
if x.dtype not in _real_floating_dtypes:
|
||||
raise TypeError("Only real floating-point dtypes are allowed in var")
|
||||
return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
"""
|
||||
This file defines the types for type annotations.
|
||||
|
||||
These names aren't part of the module namespace, but they are used in the
|
||||
annotations in the function signatures. The functions in the module are only
|
||||
valid for inputs that match the given type annotations.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
__all__ = [
|
||||
"Array",
|
||||
"Device",
|
||||
"Dtype",
|
||||
"SupportsDLPack",
|
||||
"SupportsBufferProtocol",
|
||||
"PyCapsule",
|
||||
]
|
||||
|
||||
import sys
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Literal,
|
||||
Sequence,
|
||||
Type,
|
||||
Union,
|
||||
TypeVar,
|
||||
Protocol,
|
||||
)
|
||||
|
||||
from ._array_object import Array
|
||||
from numpy import (
|
||||
dtype,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
)
|
||||
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
|
||||
class NestedSequence(Protocol[_T_co]):
|
||||
def __getitem__(self, key: int, /) -> _T_co | NestedSequence[_T_co]: ...
|
||||
def __len__(self, /) -> int: ...
|
||||
|
||||
Device = Literal["cpu"]
|
||||
|
||||
Dtype = dtype[Union[
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
]]
|
||||
|
||||
if sys.version_info >= (3, 12):
|
||||
from collections.abc import Buffer as SupportsBufferProtocol
|
||||
else:
|
||||
SupportsBufferProtocol = Any
|
||||
|
||||
PyCapsule = Any
|
||||
|
||||
class SupportsDLPack(Protocol):
|
||||
def __dlpack__(self, /, *, stream: None = ...) -> PyCapsule: ...
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def all(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.all <numpy.all>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.asarray(np.all(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
||||
|
||||
def any(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.any <numpy.any>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.asarray(np.any(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
|
@ -0,0 +1,466 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ._dtypes import (
|
||||
_floating_dtypes,
|
||||
_numeric_dtypes,
|
||||
float32,
|
||||
float64,
|
||||
complex64,
|
||||
complex128
|
||||
)
|
||||
from ._manipulation_functions import reshape
|
||||
from ._elementwise_functions import conj
|
||||
from ._array_object import Array
|
||||
|
||||
from ..core.numeric import normalize_axis_tuple
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype
|
||||
|
||||
from typing import NamedTuple
|
||||
|
||||
import numpy.linalg
|
||||
import numpy as np
|
||||
|
||||
class EighResult(NamedTuple):
|
||||
eigenvalues: Array
|
||||
eigenvectors: Array
|
||||
|
||||
class QRResult(NamedTuple):
|
||||
Q: Array
|
||||
R: Array
|
||||
|
||||
class SlogdetResult(NamedTuple):
|
||||
sign: Array
|
||||
logabsdet: Array
|
||||
|
||||
class SVDResult(NamedTuple):
|
||||
U: Array
|
||||
S: Array
|
||||
Vh: Array
|
||||
|
||||
# Note: the inclusion of the upper keyword is different from
|
||||
# np.linalg.cholesky, which does not have it.
|
||||
def cholesky(x: Array, /, *, upper: bool = False) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.cholesky.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in cholesky')
|
||||
L = np.linalg.cholesky(x._array)
|
||||
if upper:
|
||||
U = Array._new(L).mT
|
||||
if U.dtype in [complex64, complex128]:
|
||||
U = conj(U)
|
||||
return U
|
||||
return Array._new(L)
|
||||
|
||||
# Note: cross is the numpy top-level namespace, not np.linalg
|
||||
def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in cross')
|
||||
# Note: this is different from np.cross(), which broadcasts
|
||||
if x1.shape != x2.shape:
|
||||
raise ValueError('x1 and x2 must have the same shape')
|
||||
if x1.ndim == 0:
|
||||
raise ValueError('cross() requires arrays of dimension at least 1')
|
||||
# Note: this is different from np.cross(), which allows dimension 2
|
||||
if x1.shape[axis] != 3:
|
||||
raise ValueError('cross() dimension must equal 3')
|
||||
return Array._new(np.cross(x1._array, x2._array, axis=axis))
|
||||
|
||||
def det(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.det.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in det')
|
||||
return Array._new(np.linalg.det(x._array))
|
||||
|
||||
# Note: diagonal is the numpy top-level namespace, not np.linalg
|
||||
def diagonal(x: Array, /, *, offset: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: diagonal always operates on the last two axes, whereas np.diagonal
|
||||
# operates on the first two axes by default
|
||||
return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))
|
||||
|
||||
|
||||
def eigh(x: Array, /) -> EighResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.eigh.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in eigh')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.eigh, which only returns a tuple.
|
||||
return EighResult(*map(Array._new, np.linalg.eigh(x._array)))
|
||||
|
||||
|
||||
def eigvalsh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.eigvalsh.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in eigvalsh')
|
||||
|
||||
return Array._new(np.linalg.eigvalsh(x._array))
|
||||
|
||||
def inv(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.inv.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in inv')
|
||||
|
||||
return Array._new(np.linalg.inv(x._array))
|
||||
|
||||
|
||||
# Note: matmul is the numpy top-level namespace but not in np.linalg
|
||||
def matmul(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to numeric dtypes only is different from
|
||||
# np.matmul.
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in matmul')
|
||||
|
||||
return Array._new(np.matmul(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the name here is different from norm(). The array API norm is split
|
||||
# into matrix_norm and vector_norm().
|
||||
|
||||
# The type for ord should be Optional[Union[int, float, Literal[np.inf,
|
||||
# -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
|
||||
# literals.
|
||||
def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.norm.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in matrix_norm')
|
||||
|
||||
return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))
|
||||
|
||||
|
||||
def matrix_power(x: Array, n: int, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.matrix_power.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')
|
||||
|
||||
# np.matrix_power already checks if n is an integer
|
||||
return Array._new(np.linalg.matrix_power(x._array, n))
|
||||
|
||||
# Note: the keyword argument name rtol is different from np.linalg.matrix_rank
|
||||
def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: this is different from np.linalg.matrix_rank, which supports 1
|
||||
# dimensional arrays.
|
||||
if x.ndim < 2:
|
||||
raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
|
||||
S = np.linalg.svd(x._array, compute_uv=False)
|
||||
if rtol is None:
|
||||
tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
|
||||
else:
|
||||
if isinstance(rtol, Array):
|
||||
rtol = rtol._array
|
||||
# Note: this is different from np.linalg.matrix_rank, which does not multiply
|
||||
# the tolerance by the largest singular value.
|
||||
tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
|
||||
return Array._new(np.count_nonzero(S > tol, axis=-1))
|
||||
|
||||
|
||||
# Note: this function is new in the array API spec. Unlike transpose, it only
|
||||
# transposes the last two axes.
|
||||
def matrix_transpose(x: Array, /) -> Array:
|
||||
if x.ndim < 2:
|
||||
raise ValueError("x must be at least 2-dimensional for matrix_transpose")
|
||||
return Array._new(np.swapaxes(x._array, -1, -2))
|
||||
|
||||
# Note: outer is the numpy top-level namespace, not np.linalg
|
||||
def outer(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to numeric dtypes only is different from
|
||||
# np.outer.
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in outer')
|
||||
|
||||
# Note: the restriction to only 1-dim arrays is different from np.outer
|
||||
if x1.ndim != 1 or x2.ndim != 1:
|
||||
raise ValueError('The input arrays to outer must be 1-dimensional')
|
||||
|
||||
return Array._new(np.outer(x1._array, x2._array))
|
||||
|
||||
# Note: the keyword argument name rtol is different from np.linalg.pinv
|
||||
def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.pinv.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in pinv')
|
||||
|
||||
# Note: this is different from np.linalg.pinv, which does not multiply the
|
||||
# default tolerance by max(M, N).
|
||||
if rtol is None:
|
||||
rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
|
||||
return Array._new(np.linalg.pinv(x._array, rcond=rtol))
|
||||
|
||||
def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.qr.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in qr')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.linalg.qr, which only returns a tuple.
|
||||
return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))
|
||||
|
||||
def slogdet(x: Array, /) -> SlogdetResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.slogdet.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in slogdet')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.linalg.slogdet, which only returns a tuple.
|
||||
return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))
|
||||
|
||||
# Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
|
||||
# vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
|
||||
# of matrices. The np.linalg.solve behavior of allowing stacks of both
|
||||
# matrices and vectors is ambiguous c.f.
|
||||
# https://github.com/numpy/numpy/issues/15349 and
|
||||
# https://github.com/data-apis/array-api/issues/285.
|
||||
|
||||
# To workaround this, the below is the code from np.linalg.solve except
|
||||
# only calling solve1 in the exactly 1D case.
|
||||
def _solve(a, b):
|
||||
from ..linalg.linalg import (_makearray, _assert_stacked_2d,
|
||||
_assert_stacked_square, _commonType,
|
||||
isComplexType, get_linalg_error_extobj,
|
||||
_raise_linalgerror_singular)
|
||||
from ..linalg import _umath_linalg
|
||||
|
||||
a, _ = _makearray(a)
|
||||
_assert_stacked_2d(a)
|
||||
_assert_stacked_square(a)
|
||||
b, wrap = _makearray(b)
|
||||
t, result_t = _commonType(a, b)
|
||||
|
||||
# This part is different from np.linalg.solve
|
||||
if b.ndim == 1:
|
||||
gufunc = _umath_linalg.solve1
|
||||
else:
|
||||
gufunc = _umath_linalg.solve
|
||||
|
||||
# This does nothing currently but is left in because it will be relevant
|
||||
# when complex dtype support is added to the spec in 2022.
|
||||
signature = 'DD->D' if isComplexType(t) else 'dd->d'
|
||||
with np.errstate(call=_raise_linalgerror_singular, invalid='call',
|
||||
over='ignore', divide='ignore', under='ignore'):
|
||||
r = gufunc(a, b, signature=signature)
|
||||
|
||||
return wrap(r.astype(result_t, copy=False))
|
||||
|
||||
def solve(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.solve.
|
||||
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in solve')
|
||||
|
||||
return Array._new(_solve(x1._array, x2._array))
|
||||
|
||||
def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.svd.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in svd')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.svd, which only returns a tuple.
|
||||
return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))
|
||||
|
||||
# Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
|
||||
# np.linalg.svd(compute_uv=False).
|
||||
def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in svdvals')
|
||||
return Array._new(np.linalg.svd(x._array, compute_uv=False))
|
||||
|
||||
# Note: tensordot is the numpy top-level namespace but not in np.linalg
|
||||
|
||||
# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
|
||||
def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
|
||||
# Note: the restriction to numeric dtypes only is different from
|
||||
# np.tensordot.
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in tensordot')
|
||||
|
||||
return Array._new(np.tensordot(x1._array, x2._array, axes=axes))
|
||||
|
||||
# Note: trace is the numpy top-level namespace, not np.linalg
|
||||
def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in trace')
|
||||
|
||||
# Note: trace() works the same as sum() and prod() (see
|
||||
# _statistical_functions.py)
|
||||
if dtype is None:
|
||||
if x.dtype == float32:
|
||||
dtype = float64
|
||||
elif x.dtype == complex64:
|
||||
dtype = complex128
|
||||
# Note: trace always operates on the last two axes, whereas np.trace
|
||||
# operates on the first two axes by default
|
||||
return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype)))
|
||||
|
||||
# Note: vecdot is not in NumPy
|
||||
def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in vecdot')
|
||||
ndim = max(x1.ndim, x2.ndim)
|
||||
x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
|
||||
x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
|
||||
if x1_shape[axis] != x2_shape[axis]:
|
||||
raise ValueError("x1 and x2 must have the same size along the given axis")
|
||||
|
||||
x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
|
||||
x1_ = np.moveaxis(x1_, axis, -1)
|
||||
x2_ = np.moveaxis(x2_, axis, -1)
|
||||
|
||||
res = x1_[..., None, :] @ x2_[..., None]
|
||||
return Array._new(res[..., 0, 0])
|
||||
|
||||
|
||||
# Note: the name here is different from norm(). The array API norm is split
|
||||
# into matrix_norm and vector_norm().
|
||||
|
||||
# The type for ord should be Optional[Union[int, float, Literal[np.inf,
|
||||
# -np.inf]]] but Literal does not support floating-point literals.
|
||||
def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.norm.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in norm')
|
||||
|
||||
# np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
|
||||
# when axis=None and the input is 2-D, so to force a vector norm, we make
|
||||
# it so the input is 1-D (for axis=None), or reshape so that norm is done
|
||||
# on a single dimension.
|
||||
a = x._array
|
||||
if axis is None:
|
||||
# Note: np.linalg.norm() doesn't handle 0-D arrays
|
||||
a = a.ravel()
|
||||
_axis = 0
|
||||
elif isinstance(axis, tuple):
|
||||
# Note: The axis argument supports any number of axes, whereas
|
||||
# np.linalg.norm() only supports a single axis for vector norm.
|
||||
normalized_axis = normalize_axis_tuple(axis, x.ndim)
|
||||
rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
|
||||
newshape = axis + rest
|
||||
a = np.transpose(a, newshape).reshape(
|
||||
(np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
|
||||
_axis = 0
|
||||
else:
|
||||
_axis = axis
|
||||
|
||||
res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))
|
||||
|
||||
if keepdims:
|
||||
# We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
|
||||
# above to avoid matrix norm logic.
|
||||
shape = list(x.shape)
|
||||
_axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
|
||||
for i in _axis:
|
||||
shape[i] = 1
|
||||
res = reshape(res, tuple(shape))
|
||||
|
||||
return res
|
||||
|
||||
__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
def configuration(parent_package="", top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
|
||||
config = Configuration("array_api", parent_package, top_path)
|
||||
config.add_subpackage("tests")
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from numpy.distutils.core import setup
|
||||
|
||||
setup(configuration=configuration)
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
"""
|
||||
Tests for the array API namespace.
|
||||
|
||||
Note, full compliance with the array API can be tested with the official array API test
|
||||
suite https://github.com/data-apis/array-api-tests. This test suite primarily
|
||||
focuses on those things that are not tested by the official test suite.
|
||||
"""
|
||||
|
|
@ -0,0 +1,395 @@
|
|||
import operator
|
||||
|
||||
from numpy.testing import assert_raises, suppress_warnings
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from .. import ones, asarray, reshape, result_type, all, equal
|
||||
from .._array_object import Array
|
||||
from .._dtypes import (
|
||||
_all_dtypes,
|
||||
_boolean_dtypes,
|
||||
_real_floating_dtypes,
|
||||
_floating_dtypes,
|
||||
_complex_floating_dtypes,
|
||||
_integer_dtypes,
|
||||
_integer_or_boolean_dtypes,
|
||||
_real_numeric_dtypes,
|
||||
_numeric_dtypes,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint64,
|
||||
bool as bool_,
|
||||
)
|
||||
|
||||
|
||||
def test_validate_index():
|
||||
# The indexing tests in the official array API test suite test that the
|
||||
# array object correctly handles the subset of indices that are required
|
||||
# by the spec. But the NumPy array API implementation specifically
|
||||
# disallows any index not required by the spec, via Array._validate_index.
|
||||
# This test focuses on testing that non-valid indices are correctly
|
||||
# rejected. See
|
||||
# https://data-apis.org/array-api/latest/API_specification/indexing.html
|
||||
# and the docstring of Array._validate_index for the exact indexing
|
||||
# behavior that should be allowed. This does not test indices that are
|
||||
# already invalid in NumPy itself because Array will generally just pass
|
||||
# such indices directly to the underlying np.ndarray.
|
||||
|
||||
a = ones((3, 4))
|
||||
|
||||
# Out of bounds slices are not allowed
|
||||
assert_raises(IndexError, lambda: a[:4])
|
||||
assert_raises(IndexError, lambda: a[:-4])
|
||||
assert_raises(IndexError, lambda: a[:3:-1])
|
||||
assert_raises(IndexError, lambda: a[:-5:-1])
|
||||
assert_raises(IndexError, lambda: a[4:])
|
||||
assert_raises(IndexError, lambda: a[-4:])
|
||||
assert_raises(IndexError, lambda: a[4::-1])
|
||||
assert_raises(IndexError, lambda: a[-4::-1])
|
||||
|
||||
assert_raises(IndexError, lambda: a[...,:5])
|
||||
assert_raises(IndexError, lambda: a[...,:-5])
|
||||
assert_raises(IndexError, lambda: a[...,:5:-1])
|
||||
assert_raises(IndexError, lambda: a[...,:-6:-1])
|
||||
assert_raises(IndexError, lambda: a[...,5:])
|
||||
assert_raises(IndexError, lambda: a[...,-5:])
|
||||
assert_raises(IndexError, lambda: a[...,5::-1])
|
||||
assert_raises(IndexError, lambda: a[...,-5::-1])
|
||||
|
||||
# Boolean indices cannot be part of a larger tuple index
|
||||
assert_raises(IndexError, lambda: a[a[:,0]==1,0])
|
||||
assert_raises(IndexError, lambda: a[a[:,0]==1,...])
|
||||
assert_raises(IndexError, lambda: a[..., a[0]==1])
|
||||
assert_raises(IndexError, lambda: a[[True, True, True]])
|
||||
assert_raises(IndexError, lambda: a[(True, True, True),])
|
||||
|
||||
# Integer array indices are not allowed (except for 0-D)
|
||||
idx = asarray([[0, 1]])
|
||||
assert_raises(IndexError, lambda: a[idx])
|
||||
assert_raises(IndexError, lambda: a[idx,])
|
||||
assert_raises(IndexError, lambda: a[[0, 1]])
|
||||
assert_raises(IndexError, lambda: a[(0, 1), (0, 1)])
|
||||
assert_raises(IndexError, lambda: a[[0, 1]])
|
||||
assert_raises(IndexError, lambda: a[np.array([[0, 1]])])
|
||||
|
||||
# Multiaxis indices must contain exactly as many indices as dimensions
|
||||
assert_raises(IndexError, lambda: a[()])
|
||||
assert_raises(IndexError, lambda: a[0,])
|
||||
assert_raises(IndexError, lambda: a[0])
|
||||
assert_raises(IndexError, lambda: a[:])
|
||||
|
||||
def test_operators():
|
||||
# For every operator, we test that it works for the required type
|
||||
# combinations and raises TypeError otherwise
|
||||
binary_op_dtypes = {
|
||||
"__add__": "numeric",
|
||||
"__and__": "integer_or_boolean",
|
||||
"__eq__": "all",
|
||||
"__floordiv__": "real numeric",
|
||||
"__ge__": "real numeric",
|
||||
"__gt__": "real numeric",
|
||||
"__le__": "real numeric",
|
||||
"__lshift__": "integer",
|
||||
"__lt__": "real numeric",
|
||||
"__mod__": "real numeric",
|
||||
"__mul__": "numeric",
|
||||
"__ne__": "all",
|
||||
"__or__": "integer_or_boolean",
|
||||
"__pow__": "numeric",
|
||||
"__rshift__": "integer",
|
||||
"__sub__": "numeric",
|
||||
"__truediv__": "floating",
|
||||
"__xor__": "integer_or_boolean",
|
||||
}
|
||||
# Recompute each time because of in-place ops
|
||||
def _array_vals():
|
||||
for d in _integer_dtypes:
|
||||
yield asarray(1, dtype=d)
|
||||
for d in _boolean_dtypes:
|
||||
yield asarray(False, dtype=d)
|
||||
for d in _floating_dtypes:
|
||||
yield asarray(1.0, dtype=d)
|
||||
|
||||
|
||||
BIG_INT = int(1e30)
|
||||
for op, dtypes in binary_op_dtypes.items():
|
||||
ops = [op]
|
||||
if op not in ["__eq__", "__ne__", "__le__", "__ge__", "__lt__", "__gt__"]:
|
||||
rop = "__r" + op[2:]
|
||||
iop = "__i" + op[2:]
|
||||
ops += [rop, iop]
|
||||
for s in [1, 1.0, 1j, BIG_INT, False]:
|
||||
for _op in ops:
|
||||
for a in _array_vals():
|
||||
# Test array op scalar. From the spec, the following combinations
|
||||
# are supported:
|
||||
|
||||
# - Python bool for a bool array dtype,
|
||||
# - a Python int within the bounds of the given dtype for integer array dtypes,
|
||||
# - a Python int or float for real floating-point array dtypes
|
||||
# - a Python int, float, or complex for complex floating-point array dtypes
|
||||
|
||||
if ((dtypes == "all"
|
||||
or dtypes == "numeric" and a.dtype in _numeric_dtypes
|
||||
or dtypes == "real numeric" and a.dtype in _real_numeric_dtypes
|
||||
or dtypes == "integer" and a.dtype in _integer_dtypes
|
||||
or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes
|
||||
or dtypes == "boolean" and a.dtype in _boolean_dtypes
|
||||
or dtypes == "floating" and a.dtype in _floating_dtypes
|
||||
)
|
||||
# bool is a subtype of int, which is why we avoid
|
||||
# isinstance here.
|
||||
and (a.dtype in _boolean_dtypes and type(s) == bool
|
||||
or a.dtype in _integer_dtypes and type(s) == int
|
||||
or a.dtype in _real_floating_dtypes and type(s) in [float, int]
|
||||
or a.dtype in _complex_floating_dtypes and type(s) in [complex, float, int]
|
||||
)):
|
||||
if a.dtype in _integer_dtypes and s == BIG_INT:
|
||||
assert_raises(OverflowError, lambda: getattr(a, _op)(s))
|
||||
else:
|
||||
# Only test for no error
|
||||
with suppress_warnings() as sup:
|
||||
# ignore warnings from pow(BIG_INT)
|
||||
sup.filter(RuntimeWarning,
|
||||
"invalid value encountered in power")
|
||||
getattr(a, _op)(s)
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(a, _op)(s))
|
||||
|
||||
# Test array op array.
|
||||
for _op in ops:
|
||||
for x in _array_vals():
|
||||
for y in _array_vals():
|
||||
# See the promotion table in NEP 47 or the array
|
||||
# API spec page on type promotion. Mixed kind
|
||||
# promotion is not defined.
|
||||
if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
|
||||
or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
|
||||
or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
|
||||
or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
|
||||
or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes
|
||||
or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes
|
||||
or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
|
||||
or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
|
||||
):
|
||||
assert_raises(TypeError, lambda: getattr(x, _op)(y))
|
||||
# Ensure in-place operators only promote to the same dtype as the left operand.
|
||||
elif (
|
||||
_op.startswith("__i")
|
||||
and result_type(x.dtype, y.dtype) != x.dtype
|
||||
):
|
||||
assert_raises(TypeError, lambda: getattr(x, _op)(y))
|
||||
# Ensure only those dtypes that are required for every operator are allowed.
|
||||
elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
|
||||
or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
|
||||
or (dtypes == "real numeric" and x.dtype in _real_numeric_dtypes and y.dtype in _real_numeric_dtypes)
|
||||
or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
|
||||
or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
|
||||
or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
|
||||
or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes)
|
||||
or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
|
||||
or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes
|
||||
):
|
||||
getattr(x, _op)(y)
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(x, _op)(y))
|
||||
|
||||
unary_op_dtypes = {
|
||||
"__abs__": "numeric",
|
||||
"__invert__": "integer_or_boolean",
|
||||
"__neg__": "numeric",
|
||||
"__pos__": "numeric",
|
||||
}
|
||||
for op, dtypes in unary_op_dtypes.items():
|
||||
for a in _array_vals():
|
||||
if (
|
||||
dtypes == "numeric"
|
||||
and a.dtype in _numeric_dtypes
|
||||
or dtypes == "integer_or_boolean"
|
||||
and a.dtype in _integer_or_boolean_dtypes
|
||||
):
|
||||
# Only test for no error
|
||||
getattr(a, op)()
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(a, op)())
|
||||
|
||||
# Finally, matmul() must be tested separately, because it works a bit
|
||||
# different from the other operations.
|
||||
def _matmul_array_vals():
|
||||
for a in _array_vals():
|
||||
yield a
|
||||
for d in _all_dtypes:
|
||||
yield ones((3, 4), dtype=d)
|
||||
yield ones((4, 2), dtype=d)
|
||||
yield ones((4, 4), dtype=d)
|
||||
|
||||
# Scalars always error
|
||||
for _op in ["__matmul__", "__rmatmul__", "__imatmul__"]:
|
||||
for s in [1, 1.0, False]:
|
||||
for a in _matmul_array_vals():
|
||||
if (type(s) in [float, int] and a.dtype in _floating_dtypes
|
||||
or type(s) == int and a.dtype in _integer_dtypes):
|
||||
# Type promotion is valid, but @ is not allowed on 0-D
|
||||
# inputs, so the error is a ValueError
|
||||
assert_raises(ValueError, lambda: getattr(a, _op)(s))
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(a, _op)(s))
|
||||
|
||||
for x in _matmul_array_vals():
|
||||
for y in _matmul_array_vals():
|
||||
if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
|
||||
or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
|
||||
or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
|
||||
or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
|
||||
or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
|
||||
or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
|
||||
or x.dtype in _boolean_dtypes
|
||||
or y.dtype in _boolean_dtypes
|
||||
):
|
||||
assert_raises(TypeError, lambda: x.__matmul__(y))
|
||||
assert_raises(TypeError, lambda: y.__rmatmul__(x))
|
||||
assert_raises(TypeError, lambda: x.__imatmul__(y))
|
||||
elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]:
|
||||
assert_raises(ValueError, lambda: x.__matmul__(y))
|
||||
assert_raises(ValueError, lambda: y.__rmatmul__(x))
|
||||
if result_type(x.dtype, y.dtype) != x.dtype:
|
||||
assert_raises(TypeError, lambda: x.__imatmul__(y))
|
||||
else:
|
||||
assert_raises(ValueError, lambda: x.__imatmul__(y))
|
||||
else:
|
||||
x.__matmul__(y)
|
||||
y.__rmatmul__(x)
|
||||
if result_type(x.dtype, y.dtype) != x.dtype:
|
||||
assert_raises(TypeError, lambda: x.__imatmul__(y))
|
||||
elif y.shape[0] != y.shape[1]:
|
||||
# This one fails because x @ y has a different shape from x
|
||||
assert_raises(ValueError, lambda: x.__imatmul__(y))
|
||||
else:
|
||||
x.__imatmul__(y)
|
||||
|
||||
|
||||
def test_python_scalar_construtors():
|
||||
b = asarray(False)
|
||||
i = asarray(0)
|
||||
f = asarray(0.0)
|
||||
c = asarray(0j)
|
||||
|
||||
assert bool(b) == False
|
||||
assert int(i) == 0
|
||||
assert float(f) == 0.0
|
||||
assert operator.index(i) == 0
|
||||
|
||||
# bool/int/float/complex should only be allowed on 0-D arrays.
|
||||
assert_raises(TypeError, lambda: bool(asarray([False])))
|
||||
assert_raises(TypeError, lambda: int(asarray([0])))
|
||||
assert_raises(TypeError, lambda: float(asarray([0.0])))
|
||||
assert_raises(TypeError, lambda: complex(asarray([0j])))
|
||||
assert_raises(TypeError, lambda: operator.index(asarray([0])))
|
||||
|
||||
# bool should work on all types of arrays
|
||||
assert bool(b) is bool(i) is bool(f) is bool(c) is False
|
||||
|
||||
# int should fail on complex arrays
|
||||
assert int(b) == int(i) == int(f) == 0
|
||||
assert_raises(TypeError, lambda: int(c))
|
||||
|
||||
# float should fail on complex arrays
|
||||
assert float(b) == float(i) == float(f) == 0.0
|
||||
assert_raises(TypeError, lambda: float(c))
|
||||
|
||||
# complex should work on all types of arrays
|
||||
assert complex(b) == complex(i) == complex(f) == complex(c) == 0j
|
||||
|
||||
# index should only work on integer arrays
|
||||
assert operator.index(i) == 0
|
||||
assert_raises(TypeError, lambda: operator.index(b))
|
||||
assert_raises(TypeError, lambda: operator.index(f))
|
||||
assert_raises(TypeError, lambda: operator.index(c))
|
||||
|
||||
|
||||
def test_device_property():
|
||||
a = ones((3, 4))
|
||||
assert a.device == 'cpu'
|
||||
|
||||
assert all(equal(a.to_device('cpu'), a))
|
||||
assert_raises(ValueError, lambda: a.to_device('gpu'))
|
||||
|
||||
assert all(equal(asarray(a, device='cpu'), a))
|
||||
assert_raises(ValueError, lambda: asarray(a, device='gpu'))
|
||||
|
||||
def test_array_properties():
|
||||
a = ones((1, 2, 3))
|
||||
b = ones((2, 3))
|
||||
assert_raises(ValueError, lambda: a.T)
|
||||
|
||||
assert isinstance(b.T, Array)
|
||||
assert b.T.shape == (3, 2)
|
||||
|
||||
assert isinstance(a.mT, Array)
|
||||
assert a.mT.shape == (1, 3, 2)
|
||||
assert isinstance(b.mT, Array)
|
||||
assert b.mT.shape == (3, 2)
|
||||
|
||||
def test___array__():
|
||||
a = ones((2, 3), dtype=int16)
|
||||
assert np.asarray(a) is a._array
|
||||
b = np.asarray(a, dtype=np.float64)
|
||||
assert np.all(np.equal(b, np.ones((2, 3), dtype=np.float64)))
|
||||
assert b.dtype == np.float64
|
||||
|
||||
def test_allow_newaxis():
|
||||
a = ones(5)
|
||||
indexed_a = a[None, :]
|
||||
assert indexed_a.shape == (1, 5)
|
||||
|
||||
def test_disallow_flat_indexing_with_newaxis():
|
||||
a = ones((3, 3, 3))
|
||||
with pytest.raises(IndexError):
|
||||
a[None, 0, 0]
|
||||
|
||||
def test_disallow_mask_with_newaxis():
|
||||
a = ones((3, 3, 3))
|
||||
with pytest.raises(IndexError):
|
||||
a[None, asarray(True)]
|
||||
|
||||
@pytest.mark.parametrize("shape", [(), (5,), (3, 3, 3)])
|
||||
@pytest.mark.parametrize("index", ["string", False, True])
|
||||
def test_error_on_invalid_index(shape, index):
|
||||
a = ones(shape)
|
||||
with pytest.raises(IndexError):
|
||||
a[index]
|
||||
|
||||
def test_mask_0d_array_without_errors():
|
||||
a = ones(())
|
||||
a[asarray(True)]
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"i", [slice(5), slice(5, 0), asarray(True), asarray([0, 1])]
|
||||
)
|
||||
def test_error_on_invalid_index_with_ellipsis(i):
|
||||
a = ones((3, 3, 3))
|
||||
with pytest.raises(IndexError):
|
||||
a[..., i]
|
||||
with pytest.raises(IndexError):
|
||||
a[i, ...]
|
||||
|
||||
def test_array_keys_use_private_array():
|
||||
"""
|
||||
Indexing operations convert array keys before indexing the internal array
|
||||
|
||||
Fails when array_api array keys are not converted into NumPy-proper arrays
|
||||
in __getitem__(). This is achieved by passing array_api arrays with 0-sized
|
||||
dimensions, which NumPy-proper treats erroneously - not sure why!
|
||||
|
||||
TODO: Find and use appropriate __setitem__() case.
|
||||
"""
|
||||
a = ones((0, 0), dtype=bool_)
|
||||
assert a[a].shape == (0,)
|
||||
|
||||
a = ones((0,), dtype=bool_)
|
||||
key = ones((0, 0), dtype=bool_)
|
||||
with pytest.raises(IndexError):
|
||||
a[key]
|
||||
|
|
@ -0,0 +1,142 @@
|
|||
from numpy.testing import assert_raises
|
||||
import numpy as np
|
||||
|
||||
from .. import all
|
||||
from .._creation_functions import (
|
||||
asarray,
|
||||
arange,
|
||||
empty,
|
||||
empty_like,
|
||||
eye,
|
||||
full,
|
||||
full_like,
|
||||
linspace,
|
||||
meshgrid,
|
||||
ones,
|
||||
ones_like,
|
||||
zeros,
|
||||
zeros_like,
|
||||
)
|
||||
from .._dtypes import float32, float64
|
||||
from .._array_object import Array
|
||||
|
||||
|
||||
def test_asarray_errors():
|
||||
# Test various protections against incorrect usage
|
||||
assert_raises(TypeError, lambda: Array([1]))
|
||||
assert_raises(TypeError, lambda: asarray(["a"]))
|
||||
assert_raises(ValueError, lambda: asarray([1.0], dtype=np.float16))
|
||||
assert_raises(OverflowError, lambda: asarray(2**100))
|
||||
# Preferably this would be OverflowError
|
||||
# assert_raises(OverflowError, lambda: asarray([2**100]))
|
||||
assert_raises(TypeError, lambda: asarray([2**100]))
|
||||
asarray([1], device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: asarray([1], device="gpu"))
|
||||
|
||||
assert_raises(ValueError, lambda: asarray([1], dtype=int))
|
||||
assert_raises(ValueError, lambda: asarray([1], dtype="i"))
|
||||
|
||||
|
||||
def test_asarray_copy():
|
||||
a = asarray([1])
|
||||
b = asarray(a, copy=True)
|
||||
a[0] = 0
|
||||
assert all(b[0] == 1)
|
||||
assert all(a[0] == 0)
|
||||
a = asarray([1])
|
||||
b = asarray(a, copy=np._CopyMode.ALWAYS)
|
||||
a[0] = 0
|
||||
assert all(b[0] == 1)
|
||||
assert all(a[0] == 0)
|
||||
a = asarray([1])
|
||||
b = asarray(a, copy=np._CopyMode.NEVER)
|
||||
a[0] = 0
|
||||
assert all(b[0] == 0)
|
||||
assert_raises(NotImplementedError, lambda: asarray(a, copy=False))
|
||||
assert_raises(NotImplementedError,
|
||||
lambda: asarray(a, copy=np._CopyMode.IF_NEEDED))
|
||||
|
||||
|
||||
def test_arange_errors():
|
||||
arange(1, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: arange(1, device="gpu"))
|
||||
assert_raises(ValueError, lambda: arange(1, dtype=int))
|
||||
assert_raises(ValueError, lambda: arange(1, dtype="i"))
|
||||
|
||||
|
||||
def test_empty_errors():
|
||||
empty((1,), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: empty((1,), device="gpu"))
|
||||
assert_raises(ValueError, lambda: empty((1,), dtype=int))
|
||||
assert_raises(ValueError, lambda: empty((1,), dtype="i"))
|
||||
|
||||
|
||||
def test_empty_like_errors():
|
||||
empty_like(asarray(1), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: empty_like(asarray(1), device="gpu"))
|
||||
assert_raises(ValueError, lambda: empty_like(asarray(1), dtype=int))
|
||||
assert_raises(ValueError, lambda: empty_like(asarray(1), dtype="i"))
|
||||
|
||||
|
||||
def test_eye_errors():
|
||||
eye(1, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: eye(1, device="gpu"))
|
||||
assert_raises(ValueError, lambda: eye(1, dtype=int))
|
||||
assert_raises(ValueError, lambda: eye(1, dtype="i"))
|
||||
|
||||
|
||||
def test_full_errors():
|
||||
full((1,), 0, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: full((1,), 0, device="gpu"))
|
||||
assert_raises(ValueError, lambda: full((1,), 0, dtype=int))
|
||||
assert_raises(ValueError, lambda: full((1,), 0, dtype="i"))
|
||||
|
||||
|
||||
def test_full_like_errors():
|
||||
full_like(asarray(1), 0, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: full_like(asarray(1), 0, device="gpu"))
|
||||
assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype=int))
|
||||
assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype="i"))
|
||||
|
||||
|
||||
def test_linspace_errors():
|
||||
linspace(0, 1, 10, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: linspace(0, 1, 10, device="gpu"))
|
||||
assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype=float))
|
||||
assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype="f"))
|
||||
|
||||
|
||||
def test_ones_errors():
|
||||
ones((1,), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: ones((1,), device="gpu"))
|
||||
assert_raises(ValueError, lambda: ones((1,), dtype=int))
|
||||
assert_raises(ValueError, lambda: ones((1,), dtype="i"))
|
||||
|
||||
|
||||
def test_ones_like_errors():
|
||||
ones_like(asarray(1), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: ones_like(asarray(1), device="gpu"))
|
||||
assert_raises(ValueError, lambda: ones_like(asarray(1), dtype=int))
|
||||
assert_raises(ValueError, lambda: ones_like(asarray(1), dtype="i"))
|
||||
|
||||
|
||||
def test_zeros_errors():
|
||||
zeros((1,), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: zeros((1,), device="gpu"))
|
||||
assert_raises(ValueError, lambda: zeros((1,), dtype=int))
|
||||
assert_raises(ValueError, lambda: zeros((1,), dtype="i"))
|
||||
|
||||
|
||||
def test_zeros_like_errors():
|
||||
zeros_like(asarray(1), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: zeros_like(asarray(1), device="gpu"))
|
||||
assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype=int))
|
||||
assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype="i"))
|
||||
|
||||
def test_meshgrid_dtype_errors():
|
||||
# Doesn't raise
|
||||
meshgrid()
|
||||
meshgrid(asarray([1.], dtype=float32))
|
||||
meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float32))
|
||||
|
||||
assert_raises(ValueError, lambda: meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float64)))
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
import pytest
|
||||
|
||||
from numpy.testing import assert_raises
|
||||
from numpy import array_api as xp
|
||||
import numpy as np
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"from_, to, expected",
|
||||
[
|
||||
(xp.int8, xp.int16, True),
|
||||
(xp.int16, xp.int8, False),
|
||||
(xp.bool, xp.int8, False),
|
||||
(xp.asarray(0, dtype=xp.uint8), xp.int8, False),
|
||||
],
|
||||
)
|
||||
def test_can_cast(from_, to, expected):
|
||||
"""
|
||||
can_cast() returns correct result
|
||||
"""
|
||||
assert xp.can_cast(from_, to) == expected
|
||||
|
||||
def test_isdtype_strictness():
|
||||
assert_raises(TypeError, lambda: xp.isdtype(xp.float64, 64))
|
||||
assert_raises(ValueError, lambda: xp.isdtype(xp.float64, 'f8'))
|
||||
|
||||
assert_raises(TypeError, lambda: xp.isdtype(xp.float64, (('integral',),)))
|
||||
assert_raises(TypeError, lambda: xp.isdtype(xp.float64, np.object_))
|
||||
|
||||
# TODO: These will require https://github.com/numpy/numpy/issues/23883
|
||||
# assert_raises(TypeError, lambda: xp.isdtype(xp.float64, None))
|
||||
# assert_raises(TypeError, lambda: xp.isdtype(xp.float64, np.float64))
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
from inspect import getfullargspec
|
||||
|
||||
from numpy.testing import assert_raises
|
||||
|
||||
from .. import asarray, _elementwise_functions
|
||||
from .._elementwise_functions import bitwise_left_shift, bitwise_right_shift
|
||||
from .._dtypes import (
|
||||
_dtype_categories,
|
||||
_boolean_dtypes,
|
||||
_floating_dtypes,
|
||||
_integer_dtypes,
|
||||
)
|
||||
|
||||
|
||||
def nargs(func):
|
||||
return len(getfullargspec(func).args)
|
||||
|
||||
|
||||
def test_function_types():
|
||||
# Test that every function accepts only the required input types. We only
|
||||
# test the negative cases here (error). The positive cases are tested in
|
||||
# the array API test suite.
|
||||
|
||||
elementwise_function_input_types = {
|
||||
"abs": "numeric",
|
||||
"acos": "floating-point",
|
||||
"acosh": "floating-point",
|
||||
"add": "numeric",
|
||||
"asin": "floating-point",
|
||||
"asinh": "floating-point",
|
||||
"atan": "floating-point",
|
||||
"atan2": "real floating-point",
|
||||
"atanh": "floating-point",
|
||||
"bitwise_and": "integer or boolean",
|
||||
"bitwise_invert": "integer or boolean",
|
||||
"bitwise_left_shift": "integer",
|
||||
"bitwise_or": "integer or boolean",
|
||||
"bitwise_right_shift": "integer",
|
||||
"bitwise_xor": "integer or boolean",
|
||||
"ceil": "real numeric",
|
||||
"conj": "complex floating-point",
|
||||
"cos": "floating-point",
|
||||
"cosh": "floating-point",
|
||||
"divide": "floating-point",
|
||||
"equal": "all",
|
||||
"exp": "floating-point",
|
||||
"expm1": "floating-point",
|
||||
"floor": "real numeric",
|
||||
"floor_divide": "real numeric",
|
||||
"greater": "real numeric",
|
||||
"greater_equal": "real numeric",
|
||||
"imag": "complex floating-point",
|
||||
"isfinite": "numeric",
|
||||
"isinf": "numeric",
|
||||
"isnan": "numeric",
|
||||
"less": "real numeric",
|
||||
"less_equal": "real numeric",
|
||||
"log": "floating-point",
|
||||
"logaddexp": "real floating-point",
|
||||
"log10": "floating-point",
|
||||
"log1p": "floating-point",
|
||||
"log2": "floating-point",
|
||||
"logical_and": "boolean",
|
||||
"logical_not": "boolean",
|
||||
"logical_or": "boolean",
|
||||
"logical_xor": "boolean",
|
||||
"multiply": "numeric",
|
||||
"negative": "numeric",
|
||||
"not_equal": "all",
|
||||
"positive": "numeric",
|
||||
"pow": "numeric",
|
||||
"real": "complex floating-point",
|
||||
"remainder": "real numeric",
|
||||
"round": "numeric",
|
||||
"sign": "numeric",
|
||||
"sin": "floating-point",
|
||||
"sinh": "floating-point",
|
||||
"sqrt": "floating-point",
|
||||
"square": "numeric",
|
||||
"subtract": "numeric",
|
||||
"tan": "floating-point",
|
||||
"tanh": "floating-point",
|
||||
"trunc": "real numeric",
|
||||
}
|
||||
|
||||
def _array_vals():
|
||||
for d in _integer_dtypes:
|
||||
yield asarray(1, dtype=d)
|
||||
for d in _boolean_dtypes:
|
||||
yield asarray(False, dtype=d)
|
||||
for d in _floating_dtypes:
|
||||
yield asarray(1.0, dtype=d)
|
||||
|
||||
for x in _array_vals():
|
||||
for func_name, types in elementwise_function_input_types.items():
|
||||
dtypes = _dtype_categories[types]
|
||||
func = getattr(_elementwise_functions, func_name)
|
||||
if nargs(func) == 2:
|
||||
for y in _array_vals():
|
||||
if x.dtype not in dtypes or y.dtype not in dtypes:
|
||||
assert_raises(TypeError, lambda: func(x, y))
|
||||
else:
|
||||
if x.dtype not in dtypes:
|
||||
assert_raises(TypeError, lambda: func(x))
|
||||
|
||||
|
||||
def test_bitwise_shift_error():
|
||||
# bitwise shift functions should raise when the second argument is negative
|
||||
assert_raises(
|
||||
ValueError, lambda: bitwise_left_shift(asarray([1, 1]), asarray([1, -1]))
|
||||
)
|
||||
assert_raises(
|
||||
ValueError, lambda: bitwise_right_shift(asarray([1, 1]), asarray([1, -1]))
|
||||
)
|
||||
|
|
@ -0,0 +1,24 @@
|
|||
import pytest
|
||||
|
||||
from numpy import array_api as xp
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, indices, axis, expected",
|
||||
[
|
||||
([2, 3], [1, 1, 0], 0, [3, 3, 2]),
|
||||
([2, 3], [1, 1, 0], -1, [3, 3, 2]),
|
||||
([[2, 3]], [1], -1, [[3]]),
|
||||
([[2, 3]], [0, 0], 0, [[2, 3], [2, 3]]),
|
||||
],
|
||||
)
|
||||
def test_take_function(x, indices, axis, expected):
|
||||
"""
|
||||
Indices respect relative order of a descending stable-sort
|
||||
|
||||
See https://github.com/numpy/numpy/issues/20778
|
||||
"""
|
||||
x = xp.asarray(x)
|
||||
indices = xp.asarray(indices)
|
||||
out = xp.take(x, indices, axis=axis)
|
||||
assert xp.all(out == xp.asarray(expected))
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
from numpy.testing import assert_raises
|
||||
import numpy as np
|
||||
|
||||
from .. import all
|
||||
from .._creation_functions import asarray
|
||||
from .._dtypes import float64, int8
|
||||
from .._manipulation_functions import (
|
||||
concat,
|
||||
reshape,
|
||||
stack
|
||||
)
|
||||
|
||||
|
||||
def test_concat_errors():
|
||||
assert_raises(TypeError, lambda: concat((1, 1), axis=None))
|
||||
assert_raises(TypeError, lambda: concat([asarray([1], dtype=int8),
|
||||
asarray([1], dtype=float64)]))
|
||||
|
||||
|
||||
def test_stack_errors():
|
||||
assert_raises(TypeError, lambda: stack([asarray([1, 1], dtype=int8),
|
||||
asarray([2, 2], dtype=float64)]))
|
||||
|
||||
|
||||
def test_reshape_copy():
|
||||
a = asarray(np.ones((2, 3)))
|
||||
b = reshape(a, (3, 2), copy=True)
|
||||
assert not np.shares_memory(a._array, b._array)
|
||||
|
||||
a = asarray(np.ones((2, 3)))
|
||||
b = reshape(a, (3, 2), copy=False)
|
||||
assert np.shares_memory(a._array, b._array)
|
||||
|
||||
a = asarray(np.ones((2, 3)).T)
|
||||
b = reshape(a, (3, 2), copy=True)
|
||||
assert_raises(AttributeError, lambda: reshape(a, (2, 3), copy=False))
|
||||
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
import pytest
|
||||
from hypothesis import given
|
||||
from hypothesis.extra.array_api import make_strategies_namespace
|
||||
|
||||
from numpy import array_api as xp
|
||||
|
||||
xps = make_strategies_namespace(xp)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("func", [xp.unique_all, xp.unique_inverse])
|
||||
@given(xps.arrays(dtype=xps.scalar_dtypes(), shape=xps.array_shapes()))
|
||||
def test_inverse_indices_shape(func, x):
|
||||
"""
|
||||
Inverse indices share shape of input array
|
||||
|
||||
See https://github.com/numpy/numpy/issues/20638
|
||||
"""
|
||||
out = func(x)
|
||||
assert out.inverse_indices.shape == x.shape
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
import pytest
|
||||
|
||||
from numpy import array_api as xp
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"obj, axis, expected",
|
||||
[
|
||||
([0, 0], -1, [0, 1]),
|
||||
([0, 1, 0], -1, [1, 0, 2]),
|
||||
([[0, 1], [1, 1]], 0, [[1, 0], [0, 1]]),
|
||||
([[0, 1], [1, 1]], 1, [[1, 0], [0, 1]]),
|
||||
],
|
||||
)
|
||||
def test_stable_desc_argsort(obj, axis, expected):
|
||||
"""
|
||||
Indices respect relative order of a descending stable-sort
|
||||
|
||||
See https://github.com/numpy/numpy/issues/20778
|
||||
"""
|
||||
x = xp.asarray(obj)
|
||||
out = xp.argsort(x, axis=axis, stable=True, descending=True)
|
||||
assert xp.all(out == xp.asarray(expected))
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
from typing import Callable
|
||||
|
||||
import pytest
|
||||
|
||||
from numpy import array_api as xp
|
||||
|
||||
|
||||
def p(func: Callable, *args, **kwargs):
|
||||
f_sig = ", ".join(
|
||||
[str(a) for a in args] + [f"{k}={v}" for k, v in kwargs.items()]
|
||||
)
|
||||
id_ = f"{func.__name__}({f_sig})"
|
||||
return pytest.param(func, args, kwargs, id=id_)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"func, args, kwargs",
|
||||
[
|
||||
p(xp.can_cast, 42, xp.int8),
|
||||
p(xp.can_cast, xp.int8, 42),
|
||||
p(xp.result_type, 42),
|
||||
],
|
||||
)
|
||||
def test_raises_on_invalid_types(func, args, kwargs):
|
||||
"""Function raises TypeError when passed invalidly-typed inputs"""
|
||||
with pytest.raises(TypeError):
|
||||
func(*args, **kwargs)
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
"""
|
||||
Compatibility module.
|
||||
|
||||
This module contains duplicated code from Python itself or 3rd party
|
||||
extensions, which may be included for the following reasons:
|
||||
|
||||
* compatibility
|
||||
* we may only need a small subset of the copied library/module
|
||||
|
||||
"""
|
||||
|
||||
from .._utils import _inspect
|
||||
from .._utils._inspect import getargspec, formatargspec
|
||||
from . import py3k
|
||||
from .py3k import *
|
||||
|
||||
__all__ = []
|
||||
__all__.extend(_inspect.__all__)
|
||||
__all__.extend(py3k.__all__)
|
||||
145
AppDir/usr/lib/python3.12/site-packages/numpy/compat/py3k.py
Normal file
145
AppDir/usr/lib/python3.12/site-packages/numpy/compat/py3k.py
Normal file
|
|
@ -0,0 +1,145 @@
|
|||
"""
|
||||
Python 3.X compatibility tools.
|
||||
|
||||
While this file was originally intended for Python 2 -> 3 transition,
|
||||
it is now used to create a compatibility layer between different
|
||||
minor versions of Python 3.
|
||||
|
||||
While the active version of numpy may not support a given version of python, we
|
||||
allow downstream libraries to continue to use these shims for forward
|
||||
compatibility with numpy while they transition their code to newer versions of
|
||||
Python.
|
||||
"""
|
||||
__all__ = ['bytes', 'asbytes', 'isfileobj', 'getexception', 'strchar',
|
||||
'unicode', 'asunicode', 'asbytes_nested', 'asunicode_nested',
|
||||
'asstr', 'open_latin1', 'long', 'basestring', 'sixu',
|
||||
'integer_types', 'is_pathlib_path', 'npy_load_module', 'Path',
|
||||
'pickle', 'contextlib_nullcontext', 'os_fspath', 'os_PathLike']
|
||||
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
import io
|
||||
try:
|
||||
import pickle5 as pickle
|
||||
except ImportError:
|
||||
import pickle
|
||||
|
||||
long = int
|
||||
integer_types = (int,)
|
||||
basestring = str
|
||||
unicode = str
|
||||
bytes = bytes
|
||||
|
||||
def asunicode(s):
|
||||
if isinstance(s, bytes):
|
||||
return s.decode('latin1')
|
||||
return str(s)
|
||||
|
||||
def asbytes(s):
|
||||
if isinstance(s, bytes):
|
||||
return s
|
||||
return str(s).encode('latin1')
|
||||
|
||||
def asstr(s):
|
||||
if isinstance(s, bytes):
|
||||
return s.decode('latin1')
|
||||
return str(s)
|
||||
|
||||
def isfileobj(f):
|
||||
if not isinstance(f, (io.FileIO, io.BufferedReader, io.BufferedWriter)):
|
||||
return False
|
||||
try:
|
||||
# BufferedReader/Writer may raise OSError when
|
||||
# fetching `fileno()` (e.g. when wrapping BytesIO).
|
||||
f.fileno()
|
||||
return True
|
||||
except OSError:
|
||||
return False
|
||||
|
||||
def open_latin1(filename, mode='r'):
|
||||
return open(filename, mode=mode, encoding='iso-8859-1')
|
||||
|
||||
def sixu(s):
|
||||
return s
|
||||
|
||||
strchar = 'U'
|
||||
|
||||
def getexception():
|
||||
return sys.exc_info()[1]
|
||||
|
||||
def asbytes_nested(x):
|
||||
if hasattr(x, '__iter__') and not isinstance(x, (bytes, unicode)):
|
||||
return [asbytes_nested(y) for y in x]
|
||||
else:
|
||||
return asbytes(x)
|
||||
|
||||
def asunicode_nested(x):
|
||||
if hasattr(x, '__iter__') and not isinstance(x, (bytes, unicode)):
|
||||
return [asunicode_nested(y) for y in x]
|
||||
else:
|
||||
return asunicode(x)
|
||||
|
||||
def is_pathlib_path(obj):
|
||||
"""
|
||||
Check whether obj is a `pathlib.Path` object.
|
||||
|
||||
Prefer using ``isinstance(obj, os.PathLike)`` instead of this function.
|
||||
"""
|
||||
return isinstance(obj, Path)
|
||||
|
||||
# from Python 3.7
|
||||
class contextlib_nullcontext:
|
||||
"""Context manager that does no additional processing.
|
||||
|
||||
Used as a stand-in for a normal context manager, when a particular
|
||||
block of code is only sometimes used with a normal context manager:
|
||||
|
||||
cm = optional_cm if condition else nullcontext()
|
||||
with cm:
|
||||
# Perform operation, using optional_cm if condition is True
|
||||
|
||||
.. note::
|
||||
Prefer using `contextlib.nullcontext` instead of this context manager.
|
||||
"""
|
||||
|
||||
def __init__(self, enter_result=None):
|
||||
self.enter_result = enter_result
|
||||
|
||||
def __enter__(self):
|
||||
return self.enter_result
|
||||
|
||||
def __exit__(self, *excinfo):
|
||||
pass
|
||||
|
||||
|
||||
def npy_load_module(name, fn, info=None):
|
||||
"""
|
||||
Load a module. Uses ``load_module`` which will be deprecated in python
|
||||
3.12. An alternative that uses ``exec_module`` is in
|
||||
numpy.distutils.misc_util.exec_mod_from_location
|
||||
|
||||
.. versionadded:: 1.11.2
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
Full module name.
|
||||
fn : str
|
||||
Path to module file.
|
||||
info : tuple, optional
|
||||
Only here for backward compatibility with Python 2.*.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mod : module
|
||||
|
||||
"""
|
||||
# Explicitly lazy import this to avoid paying the cost
|
||||
# of importing importlib at startup
|
||||
from importlib.machinery import SourceFileLoader
|
||||
return SourceFileLoader(name, fn).load_module()
|
||||
|
||||
|
||||
os_fspath = os.fspath
|
||||
os_PathLike = os.PathLike
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
def configuration(parent_package='',top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
|
||||
config = Configuration('compat', parent_package, top_path)
|
||||
config.add_subpackage('tests')
|
||||
return config
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
||||
|
|
@ -0,0 +1,22 @@
|
|||
from os.path import join
|
||||
from io import BufferedReader, BytesIO
|
||||
|
||||
from numpy.compat import isfileobj
|
||||
from numpy.testing import assert_
|
||||
from numpy.testing import tempdir
|
||||
|
||||
|
||||
def test_isfileobj():
|
||||
with tempdir(prefix="numpy_test_compat_") as folder:
|
||||
filename = join(folder, 'a.bin')
|
||||
|
||||
with open(filename, 'wb') as f:
|
||||
assert_(isfileobj(f))
|
||||
|
||||
with open(filename, 'ab') as f:
|
||||
assert_(isfileobj(f))
|
||||
|
||||
with open(filename, 'rb') as f:
|
||||
assert_(isfileobj(f))
|
||||
|
||||
assert_(isfileobj(BufferedReader(BytesIO())) is False)
|
||||
138
AppDir/usr/lib/python3.12/site-packages/numpy/conftest.py
Normal file
138
AppDir/usr/lib/python3.12/site-packages/numpy/conftest.py
Normal file
|
|
@ -0,0 +1,138 @@
|
|||
"""
|
||||
Pytest configuration and fixtures for the Numpy test suite.
|
||||
"""
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import hypothesis
|
||||
import pytest
|
||||
import numpy
|
||||
|
||||
from numpy.core._multiarray_tests import get_fpu_mode
|
||||
|
||||
|
||||
_old_fpu_mode = None
|
||||
_collect_results = {}
|
||||
|
||||
# Use a known and persistent tmpdir for hypothesis' caches, which
|
||||
# can be automatically cleared by the OS or user.
|
||||
hypothesis.configuration.set_hypothesis_home_dir(
|
||||
os.path.join(tempfile.gettempdir(), ".hypothesis")
|
||||
)
|
||||
|
||||
# We register two custom profiles for Numpy - for details see
|
||||
# https://hypothesis.readthedocs.io/en/latest/settings.html
|
||||
# The first is designed for our own CI runs; the latter also
|
||||
# forces determinism and is designed for use via np.test()
|
||||
hypothesis.settings.register_profile(
|
||||
name="numpy-profile", deadline=None, print_blob=True,
|
||||
)
|
||||
hypothesis.settings.register_profile(
|
||||
name="np.test() profile",
|
||||
deadline=None, print_blob=True, database=None, derandomize=True,
|
||||
suppress_health_check=list(hypothesis.HealthCheck),
|
||||
)
|
||||
# Note that the default profile is chosen based on the presence
|
||||
# of pytest.ini, but can be overridden by passing the
|
||||
# --hypothesis-profile=NAME argument to pytest.
|
||||
_pytest_ini = os.path.join(os.path.dirname(__file__), "..", "pytest.ini")
|
||||
hypothesis.settings.load_profile(
|
||||
"numpy-profile" if os.path.isfile(_pytest_ini) else "np.test() profile"
|
||||
)
|
||||
|
||||
# The experimentalAPI is used in _umath_tests
|
||||
os.environ["NUMPY_EXPERIMENTAL_DTYPE_API"] = "1"
|
||||
|
||||
def pytest_configure(config):
|
||||
config.addinivalue_line("markers",
|
||||
"valgrind_error: Tests that are known to error under valgrind.")
|
||||
config.addinivalue_line("markers",
|
||||
"leaks_references: Tests that are known to leak references.")
|
||||
config.addinivalue_line("markers",
|
||||
"slow: Tests that are very slow.")
|
||||
config.addinivalue_line("markers",
|
||||
"slow_pypy: Tests that are very slow on pypy.")
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption("--available-memory", action="store", default=None,
|
||||
help=("Set amount of memory available for running the "
|
||||
"test suite. This can result to tests requiring "
|
||||
"especially large amounts of memory to be skipped. "
|
||||
"Equivalent to setting environment variable "
|
||||
"NPY_AVAILABLE_MEM. Default: determined"
|
||||
"automatically."))
|
||||
|
||||
|
||||
def pytest_sessionstart(session):
|
||||
available_mem = session.config.getoption('available_memory')
|
||||
if available_mem is not None:
|
||||
os.environ['NPY_AVAILABLE_MEM'] = available_mem
|
||||
|
||||
|
||||
#FIXME when yield tests are gone.
|
||||
@pytest.hookimpl()
|
||||
def pytest_itemcollected(item):
|
||||
"""
|
||||
Check FPU precision mode was not changed during test collection.
|
||||
|
||||
The clumsy way we do it here is mainly necessary because numpy
|
||||
still uses yield tests, which can execute code at test collection
|
||||
time.
|
||||
"""
|
||||
global _old_fpu_mode
|
||||
|
||||
mode = get_fpu_mode()
|
||||
|
||||
if _old_fpu_mode is None:
|
||||
_old_fpu_mode = mode
|
||||
elif mode != _old_fpu_mode:
|
||||
_collect_results[item] = (_old_fpu_mode, mode)
|
||||
_old_fpu_mode = mode
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def check_fpu_mode(request):
|
||||
"""
|
||||
Check FPU precision mode was not changed during the test.
|
||||
"""
|
||||
old_mode = get_fpu_mode()
|
||||
yield
|
||||
new_mode = get_fpu_mode()
|
||||
|
||||
if old_mode != new_mode:
|
||||
raise AssertionError("FPU precision mode changed from {0:#x} to {1:#x}"
|
||||
" during the test".format(old_mode, new_mode))
|
||||
|
||||
collect_result = _collect_results.get(request.node)
|
||||
if collect_result is not None:
|
||||
old_mode, new_mode = collect_result
|
||||
raise AssertionError("FPU precision mode changed from {0:#x} to {1:#x}"
|
||||
" when collecting the test".format(old_mode,
|
||||
new_mode))
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def add_np(doctest_namespace):
|
||||
doctest_namespace['np'] = numpy
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def env_setup(monkeypatch):
|
||||
monkeypatch.setenv('PYTHONHASHSEED', '0')
|
||||
|
||||
|
||||
@pytest.fixture(params=[True, False])
|
||||
def weak_promotion(request):
|
||||
"""
|
||||
Fixture to ensure "legacy" promotion state or change it to use the new
|
||||
weak promotion (plus warning). `old_promotion` should be used as a
|
||||
parameter in the function.
|
||||
"""
|
||||
state = numpy._get_promotion_state()
|
||||
if request.param:
|
||||
numpy._set_promotion_state("weak_and_warn")
|
||||
else:
|
||||
numpy._set_promotion_state("legacy")
|
||||
|
||||
yield request.param
|
||||
numpy._set_promotion_state(state)
|
||||
180
AppDir/usr/lib/python3.12/site-packages/numpy/core/__init__.py
Normal file
180
AppDir/usr/lib/python3.12/site-packages/numpy/core/__init__.py
Normal file
|
|
@ -0,0 +1,180 @@
|
|||
"""
|
||||
Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
|
||||
|
||||
Please note that this module is private. All functions and objects
|
||||
are available in the main ``numpy`` namespace - use that instead.
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import warnings
|
||||
|
||||
from numpy.version import version as __version__
|
||||
|
||||
|
||||
# disables OpenBLAS affinity setting of the main thread that limits
|
||||
# python threads or processes to one core
|
||||
env_added = []
|
||||
for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
|
||||
if envkey not in os.environ:
|
||||
os.environ[envkey] = '1'
|
||||
env_added.append(envkey)
|
||||
|
||||
try:
|
||||
from . import multiarray
|
||||
except ImportError as exc:
|
||||
import sys
|
||||
msg = """
|
||||
|
||||
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
|
||||
|
||||
Importing the numpy C-extensions failed. This error can happen for
|
||||
many reasons, often due to issues with your setup or how NumPy was
|
||||
installed.
|
||||
|
||||
We have compiled some common reasons and troubleshooting tips at:
|
||||
|
||||
https://numpy.org/devdocs/user/troubleshooting-importerror.html
|
||||
|
||||
Please note and check the following:
|
||||
|
||||
* The Python version is: Python%d.%d from "%s"
|
||||
* The NumPy version is: "%s"
|
||||
|
||||
and make sure that they are the versions you expect.
|
||||
Please carefully study the documentation linked above for further help.
|
||||
|
||||
Original error was: %s
|
||||
""" % (sys.version_info[0], sys.version_info[1], sys.executable,
|
||||
__version__, exc)
|
||||
raise ImportError(msg)
|
||||
finally:
|
||||
for envkey in env_added:
|
||||
del os.environ[envkey]
|
||||
del envkey
|
||||
del env_added
|
||||
del os
|
||||
|
||||
from . import umath
|
||||
|
||||
# Check that multiarray,umath are pure python modules wrapping
|
||||
# _multiarray_umath and not either of the old c-extension modules
|
||||
if not (hasattr(multiarray, '_multiarray_umath') and
|
||||
hasattr(umath, '_multiarray_umath')):
|
||||
import sys
|
||||
path = sys.modules['numpy'].__path__
|
||||
msg = ("Something is wrong with the numpy installation. "
|
||||
"While importing we detected an older version of "
|
||||
"numpy in {}. One method of fixing this is to repeatedly uninstall "
|
||||
"numpy until none is found, then reinstall this version.")
|
||||
raise ImportError(msg.format(path))
|
||||
|
||||
from . import numerictypes as nt
|
||||
multiarray.set_typeDict(nt.sctypeDict)
|
||||
from . import numeric
|
||||
from .numeric import *
|
||||
from . import fromnumeric
|
||||
from .fromnumeric import *
|
||||
from . import defchararray as char
|
||||
from . import records
|
||||
from . import records as rec
|
||||
from .records import record, recarray, format_parser
|
||||
# Note: module name memmap is overwritten by a class with same name
|
||||
from .memmap import *
|
||||
from .defchararray import chararray
|
||||
from . import function_base
|
||||
from .function_base import *
|
||||
from . import _machar
|
||||
from . import getlimits
|
||||
from .getlimits import *
|
||||
from . import shape_base
|
||||
from .shape_base import *
|
||||
from . import einsumfunc
|
||||
from .einsumfunc import *
|
||||
del nt
|
||||
|
||||
from .numeric import absolute as abs
|
||||
|
||||
# do this after everything else, to minimize the chance of this misleadingly
|
||||
# appearing in an import-time traceback
|
||||
from . import _add_newdocs
|
||||
from . import _add_newdocs_scalars
|
||||
# add these for module-freeze analysis (like PyInstaller)
|
||||
from . import _dtype_ctypes
|
||||
from . import _internal
|
||||
from . import _dtype
|
||||
from . import _methods
|
||||
|
||||
__all__ = ['char', 'rec', 'memmap']
|
||||
__all__ += numeric.__all__
|
||||
__all__ += ['record', 'recarray', 'format_parser']
|
||||
__all__ += ['chararray']
|
||||
__all__ += function_base.__all__
|
||||
__all__ += getlimits.__all__
|
||||
__all__ += shape_base.__all__
|
||||
__all__ += einsumfunc.__all__
|
||||
|
||||
# We used to use `np.core._ufunc_reconstruct` to unpickle. This is unnecessary,
|
||||
# but old pickles saved before 1.20 will be using it, and there is no reason
|
||||
# to break loading them.
|
||||
def _ufunc_reconstruct(module, name):
|
||||
# The `fromlist` kwarg is required to ensure that `mod` points to the
|
||||
# inner-most module rather than the parent package when module name is
|
||||
# nested. This makes it possible to pickle non-toplevel ufuncs such as
|
||||
# scipy.special.expit for instance.
|
||||
mod = __import__(module, fromlist=[name])
|
||||
return getattr(mod, name)
|
||||
|
||||
|
||||
def _ufunc_reduce(func):
|
||||
# Report the `__name__`. pickle will try to find the module. Note that
|
||||
# pickle supports for this `__name__` to be a `__qualname__`. It may
|
||||
# make sense to add a `__qualname__` to ufuncs, to allow this more
|
||||
# explicitly (Numba has ufuncs as attributes).
|
||||
# See also: https://github.com/dask/distributed/issues/3450
|
||||
return func.__name__
|
||||
|
||||
|
||||
def _DType_reconstruct(scalar_type):
|
||||
# This is a work-around to pickle type(np.dtype(np.float64)), etc.
|
||||
# and it should eventually be replaced with a better solution, e.g. when
|
||||
# DTypes become HeapTypes.
|
||||
return type(dtype(scalar_type))
|
||||
|
||||
|
||||
def _DType_reduce(DType):
|
||||
# As types/classes, most DTypes can simply be pickled by their name:
|
||||
if not DType._legacy or DType.__module__ == "numpy.dtypes":
|
||||
return DType.__name__
|
||||
|
||||
# However, user defined legacy dtypes (like rational) do not end up in
|
||||
# `numpy.dtypes` as module and do not have a public class at all.
|
||||
# For these, we pickle them by reconstructing them from the scalar type:
|
||||
scalar_type = DType.type
|
||||
return _DType_reconstruct, (scalar_type,)
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
# Deprecated 2022-11-22, NumPy 1.25.
|
||||
if name == "MachAr":
|
||||
warnings.warn(
|
||||
"The `np.core.MachAr` is considered private API (NumPy 1.24)",
|
||||
DeprecationWarning, stacklevel=2,
|
||||
)
|
||||
return _machar.MachAr
|
||||
raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
|
||||
|
||||
|
||||
import copyreg
|
||||
|
||||
copyreg.pickle(ufunc, _ufunc_reduce)
|
||||
copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
|
||||
|
||||
# Unclutter namespace (must keep _*_reconstruct for unpickling)
|
||||
del copyreg
|
||||
del _ufunc_reduce
|
||||
del _DType_reduce
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
# NOTE: The `np.core` namespace is deliberately kept empty due to it
|
||||
# being private (despite the lack of leading underscore)
|
||||
7080
AppDir/usr/lib/python3.12/site-packages/numpy/core/_add_newdocs.py
Normal file
7080
AppDir/usr/lib/python3.12/site-packages/numpy/core/_add_newdocs.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,372 @@
|
|||
"""
|
||||
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
|
||||
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
|
||||
platform-dependent information.
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
from numpy.core import dtype
|
||||
from numpy.core import numerictypes as _numerictypes
|
||||
from numpy.core.function_base import add_newdoc
|
||||
|
||||
##############################################################################
|
||||
#
|
||||
# Documentation for concrete scalar classes
|
||||
#
|
||||
##############################################################################
|
||||
|
||||
def numeric_type_aliases(aliases):
|
||||
def type_aliases_gen():
|
||||
for alias, doc in aliases:
|
||||
try:
|
||||
alias_type = getattr(_numerictypes, alias)
|
||||
except AttributeError:
|
||||
# The set of aliases that actually exist varies between platforms
|
||||
pass
|
||||
else:
|
||||
yield (alias_type, alias, doc)
|
||||
return list(type_aliases_gen())
|
||||
|
||||
|
||||
possible_aliases = numeric_type_aliases([
|
||||
('int8', '8-bit signed integer (``-128`` to ``127``)'),
|
||||
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
|
||||
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
|
||||
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
|
||||
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
|
||||
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
|
||||
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
|
||||
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
|
||||
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
|
||||
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
|
||||
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
|
||||
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
|
||||
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
|
||||
('float96', '96-bit extended-precision floating-point number type'),
|
||||
('float128', '128-bit extended-precision floating-point number type'),
|
||||
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
|
||||
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
|
||||
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
|
||||
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
|
||||
])
|
||||
|
||||
|
||||
def _get_platform_and_machine():
|
||||
try:
|
||||
system, _, _, _, machine = os.uname()
|
||||
except AttributeError:
|
||||
system = sys.platform
|
||||
if system == 'win32':
|
||||
machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
|
||||
or os.environ.get('PROCESSOR_ARCHITECTURE', '')
|
||||
else:
|
||||
machine = 'unknown'
|
||||
return system, machine
|
||||
|
||||
|
||||
_system, _machine = _get_platform_and_machine()
|
||||
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
|
||||
|
||||
|
||||
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
|
||||
# note: `:field: value` is rST syntax which renders as field lists.
|
||||
o = getattr(_numerictypes, obj)
|
||||
|
||||
character_code = dtype(o).char
|
||||
canonical_name_doc = "" if obj == o.__name__ else \
|
||||
f":Canonical name: `numpy.{obj}`\n "
|
||||
if fixed_aliases:
|
||||
alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
|
||||
for alias in fixed_aliases)
|
||||
else:
|
||||
alias_doc = ''
|
||||
alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
|
||||
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
|
||||
|
||||
docstring = f"""
|
||||
{doc.strip()}
|
||||
|
||||
:Character code: ``'{character_code}'``
|
||||
{canonical_name_doc}{alias_doc}
|
||||
"""
|
||||
|
||||
add_newdoc('numpy.core.numerictypes', obj, docstring)
|
||||
|
||||
|
||||
add_newdoc_for_scalar_type('bool_', [],
|
||||
"""
|
||||
Boolean type (True or False), stored as a byte.
|
||||
|
||||
.. warning::
|
||||
|
||||
The :class:`bool_` type is not a subclass of the :class:`int_` type
|
||||
(the :class:`bool_` is not even a number type). This is different
|
||||
than Python's default implementation of :class:`bool` as a
|
||||
sub-class of :class:`int`.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('byte', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``char``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('short', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``short``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('intc', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``int``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('int_', [],
|
||||
"""
|
||||
Signed integer type, compatible with Python `int` and C ``long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('longlong', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``long long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ubyte', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned char``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ushort', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned short``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('uintc', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned int``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('uint', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ulonglong', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``unsigned long long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('half', [],
|
||||
"""
|
||||
Half-precision floating-point number type.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('single', [],
|
||||
"""
|
||||
Single-precision floating-point number type, compatible with C ``float``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('double', ['float_'],
|
||||
"""
|
||||
Double-precision floating-point number type, compatible with Python `float`
|
||||
and C ``double``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('longdouble', ['longfloat'],
|
||||
"""
|
||||
Extended-precision floating-point number type, compatible with C
|
||||
``long double`` but not necessarily with IEEE 754 quadruple-precision.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
|
||||
"""
|
||||
Complex number type composed of two single-precision floating-point
|
||||
numbers.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
|
||||
"""
|
||||
Complex number type composed of two double-precision floating-point
|
||||
numbers, compatible with Python `complex`.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
|
||||
"""
|
||||
Complex number type composed of two extended-precision floating-point
|
||||
numbers.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('object_', [],
|
||||
"""
|
||||
Any Python object.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('str_', ['unicode_'],
|
||||
r"""
|
||||
A unicode string.
|
||||
|
||||
This type strips trailing null codepoints.
|
||||
|
||||
>>> s = np.str_("abc\x00")
|
||||
>>> s
|
||||
'abc'
|
||||
|
||||
Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
|
||||
contents as UCS4:
|
||||
|
||||
>>> m = memoryview(np.str_("abc"))
|
||||
>>> m.format
|
||||
'3w'
|
||||
>>> m.tobytes()
|
||||
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('bytes_', ['string_'],
|
||||
r"""
|
||||
A byte string.
|
||||
|
||||
When used in arrays, this type strips trailing null bytes.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('void', [],
|
||||
r"""
|
||||
np.void(length_or_data, /, dtype=None)
|
||||
|
||||
Create a new structured or unstructured void scalar.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length_or_data : int, array-like, bytes-like, object
|
||||
One of multiple meanings (see notes). The length or
|
||||
bytes data of an unstructured void. Or alternatively,
|
||||
the data to be stored in the new scalar when `dtype`
|
||||
is provided.
|
||||
This can be an array-like, in which case an array may
|
||||
be returned.
|
||||
dtype : dtype, optional
|
||||
If provided the dtype of the new scalar. This dtype must
|
||||
be "void" dtype (i.e. a structured or unstructured void,
|
||||
see also :ref:`defining-structured-types`).
|
||||
|
||||
..versionadded:: 1.24
|
||||
|
||||
Notes
|
||||
-----
|
||||
For historical reasons and because void scalars can represent both
|
||||
arbitrary byte data and structured dtypes, the void constructor
|
||||
has three calling conventions:
|
||||
|
||||
1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
|
||||
``\0`` bytes. The 5 can be a Python or NumPy integer.
|
||||
2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
|
||||
The dtype itemsize will match the byte string length, here ``"V10"``.
|
||||
3. When a ``dtype=`` is passed the call is roughly the same as an
|
||||
array creation. However, a void scalar rather than array is returned.
|
||||
|
||||
Please see the examples which show all three different conventions.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.void(5)
|
||||
void(b'\x00\x00\x00\x00\x00')
|
||||
>>> np.void(b'abcd')
|
||||
void(b'\x61\x62\x63\x64')
|
||||
>>> np.void((5, 3.2, "eggs"), dtype="i,d,S5")
|
||||
(5, 3.2, b'eggs') # looks like a tuple, but is `np.void`
|
||||
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
|
||||
(3, 3) # looks like a tuple, but is `np.void`
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('datetime64', [],
|
||||
"""
|
||||
If created from a 64-bit integer, it represents an offset from
|
||||
``1970-01-01T00:00:00``.
|
||||
If created from string, the string can be in ISO 8601 date
|
||||
or datetime format.
|
||||
|
||||
>>> np.datetime64(10, 'Y')
|
||||
numpy.datetime64('1980')
|
||||
>>> np.datetime64('1980', 'Y')
|
||||
numpy.datetime64('1980')
|
||||
>>> np.datetime64(10, 'D')
|
||||
numpy.datetime64('1970-01-11')
|
||||
|
||||
See :ref:`arrays.datetime` for more information.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('timedelta64', [],
|
||||
"""
|
||||
A timedelta stored as a 64-bit integer.
|
||||
|
||||
See :ref:`arrays.datetime` for more information.
|
||||
""")
|
||||
|
||||
add_newdoc('numpy.core.numerictypes', "integer", ('is_integer',
|
||||
"""
|
||||
integer.is_integer() -> bool
|
||||
|
||||
Return ``True`` if the number is finite with integral value.
|
||||
|
||||
.. versionadded:: 1.22
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.int64(-2).is_integer()
|
||||
True
|
||||
>>> np.uint32(5).is_integer()
|
||||
True
|
||||
"""))
|
||||
|
||||
# TODO: work out how to put this on the base class, np.floating
|
||||
for float_name in ('half', 'single', 'double', 'longdouble'):
|
||||
add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
|
||||
"""
|
||||
{ftype}.as_integer_ratio() -> (int, int)
|
||||
|
||||
Return a pair of integers, whose ratio is exactly equal to the original
|
||||
floating point number, and with a positive denominator.
|
||||
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
|
||||
|
||||
>>> np.{ftype}(10.0).as_integer_ratio()
|
||||
(10, 1)
|
||||
>>> np.{ftype}(0.0).as_integer_ratio()
|
||||
(0, 1)
|
||||
>>> np.{ftype}(-.25).as_integer_ratio()
|
||||
(-1, 4)
|
||||
""".format(ftype=float_name)))
|
||||
|
||||
add_newdoc('numpy.core.numerictypes', float_name, ('is_integer',
|
||||
f"""
|
||||
{float_name}.is_integer() -> bool
|
||||
|
||||
Return ``True`` if the floating point number is finite with integral
|
||||
value, and ``False`` otherwise.
|
||||
|
||||
.. versionadded:: 1.22
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.{float_name}(-2.0).is_integer()
|
||||
True
|
||||
>>> np.{float_name}(3.2).is_integer()
|
||||
False
|
||||
"""))
|
||||
|
||||
for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
|
||||
'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
|
||||
# Add negative examples for signed cases by checking typecode
|
||||
add_newdoc('numpy.core.numerictypes', int_name, ('bit_count',
|
||||
f"""
|
||||
{int_name}.bit_count() -> int
|
||||
|
||||
Computes the number of 1-bits in the absolute value of the input.
|
||||
Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.{int_name}(127).bit_count()
|
||||
7""" +
|
||||
(f"""
|
||||
>>> np.{int_name}(-127).bit_count()
|
||||
7
|
||||
""" if dtype(int_name).char.islower() else "")))
|
||||
134
AppDir/usr/lib/python3.12/site-packages/numpy/core/_asarray.py
Normal file
134
AppDir/usr/lib/python3.12/site-packages/numpy/core/_asarray.py
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
"""
|
||||
Functions in the ``as*array`` family that promote array-likes into arrays.
|
||||
|
||||
`require` fits this category despite its name not matching this pattern.
|
||||
"""
|
||||
from .overrides import (
|
||||
array_function_dispatch,
|
||||
set_array_function_like_doc,
|
||||
set_module,
|
||||
)
|
||||
from .multiarray import array, asanyarray
|
||||
|
||||
|
||||
__all__ = ["require"]
|
||||
|
||||
|
||||
POSSIBLE_FLAGS = {
|
||||
'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
|
||||
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
|
||||
'A': 'A', 'ALIGNED': 'A',
|
||||
'W': 'W', 'WRITEABLE': 'W',
|
||||
'O': 'O', 'OWNDATA': 'O',
|
||||
'E': 'E', 'ENSUREARRAY': 'E'
|
||||
}
|
||||
|
||||
|
||||
@set_array_function_like_doc
|
||||
@set_module('numpy')
|
||||
def require(a, dtype=None, requirements=None, *, like=None):
|
||||
"""
|
||||
Return an ndarray of the provided type that satisfies requirements.
|
||||
|
||||
This function is useful to be sure that an array with the correct flags
|
||||
is returned for passing to compiled code (perhaps through ctypes).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
The object to be converted to a type-and-requirement-satisfying array.
|
||||
dtype : data-type
|
||||
The required data-type. If None preserve the current dtype. If your
|
||||
application requires the data to be in native byteorder, include
|
||||
a byteorder specification as a part of the dtype specification.
|
||||
requirements : str or sequence of str
|
||||
The requirements list can be any of the following
|
||||
|
||||
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
|
||||
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
|
||||
* 'ALIGNED' ('A') - ensure a data-type aligned array
|
||||
* 'WRITEABLE' ('W') - ensure a writable array
|
||||
* 'OWNDATA' ('O') - ensure an array that owns its own data
|
||||
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
|
||||
${ARRAY_FUNCTION_LIKE}
|
||||
|
||||
.. versionadded:: 1.20.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Array with specified requirements and type if given.
|
||||
|
||||
See Also
|
||||
--------
|
||||
asarray : Convert input to an ndarray.
|
||||
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
|
||||
ascontiguousarray : Convert input to a contiguous array.
|
||||
asfortranarray : Convert input to an ndarray with column-major
|
||||
memory order.
|
||||
ndarray.flags : Information about the memory layout of the array.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The returned array will be guaranteed to have the listed requirements
|
||||
by making a copy if needed.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> x = np.arange(6).reshape(2,3)
|
||||
>>> x.flags
|
||||
C_CONTIGUOUS : True
|
||||
F_CONTIGUOUS : False
|
||||
OWNDATA : False
|
||||
WRITEABLE : True
|
||||
ALIGNED : True
|
||||
WRITEBACKIFCOPY : False
|
||||
|
||||
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
|
||||
>>> y.flags
|
||||
C_CONTIGUOUS : False
|
||||
F_CONTIGUOUS : True
|
||||
OWNDATA : True
|
||||
WRITEABLE : True
|
||||
ALIGNED : True
|
||||
WRITEBACKIFCOPY : False
|
||||
|
||||
"""
|
||||
if like is not None:
|
||||
return _require_with_like(
|
||||
like,
|
||||
a,
|
||||
dtype=dtype,
|
||||
requirements=requirements,
|
||||
)
|
||||
|
||||
if not requirements:
|
||||
return asanyarray(a, dtype=dtype)
|
||||
|
||||
requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
|
||||
|
||||
if 'E' in requirements:
|
||||
requirements.remove('E')
|
||||
subok = False
|
||||
else:
|
||||
subok = True
|
||||
|
||||
order = 'A'
|
||||
if requirements >= {'C', 'F'}:
|
||||
raise ValueError('Cannot specify both "C" and "F" order')
|
||||
elif 'F' in requirements:
|
||||
order = 'F'
|
||||
requirements.remove('F')
|
||||
elif 'C' in requirements:
|
||||
order = 'C'
|
||||
requirements.remove('C')
|
||||
|
||||
arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
|
||||
|
||||
for prop in requirements:
|
||||
if not arr.flags[prop]:
|
||||
return arr.copy(order)
|
||||
return arr
|
||||
|
||||
|
||||
_require_with_like = array_function_dispatch()(require)
|
||||
|
|
@ -0,0 +1,42 @@
|
|||
from collections.abc import Iterable
|
||||
from typing import Any, TypeVar, Union, overload, Literal
|
||||
|
||||
from numpy import ndarray
|
||||
from numpy._typing import DTypeLike, _SupportsArrayFunc
|
||||
|
||||
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
||||
|
||||
_Requirements = Literal[
|
||||
"C", "C_CONTIGUOUS", "CONTIGUOUS",
|
||||
"F", "F_CONTIGUOUS", "FORTRAN",
|
||||
"A", "ALIGNED",
|
||||
"W", "WRITEABLE",
|
||||
"O", "OWNDATA"
|
||||
]
|
||||
_E = Literal["E", "ENSUREARRAY"]
|
||||
_RequirementsWithE = Union[_Requirements, _E]
|
||||
|
||||
@overload
|
||||
def require(
|
||||
a: _ArrayType,
|
||||
dtype: None = ...,
|
||||
requirements: None | _Requirements | Iterable[_Requirements] = ...,
|
||||
*,
|
||||
like: _SupportsArrayFunc = ...
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def require(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
requirements: _E | Iterable[_RequirementsWithE] = ...,
|
||||
*,
|
||||
like: _SupportsArrayFunc = ...
|
||||
) -> ndarray[Any, Any]: ...
|
||||
@overload
|
||||
def require(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
requirements: None | _Requirements | Iterable[_Requirements] = ...,
|
||||
*,
|
||||
like: _SupportsArrayFunc = ...
|
||||
) -> ndarray[Any, Any]: ...
|
||||
369
AppDir/usr/lib/python3.12/site-packages/numpy/core/_dtype.py
Normal file
369
AppDir/usr/lib/python3.12/site-packages/numpy/core/_dtype.py
Normal file
|
|
@ -0,0 +1,369 @@
|
|||
"""
|
||||
A place for code to be called from the implementation of np.dtype
|
||||
|
||||
String handling is much easier to do correctly in python.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
_kind_to_stem = {
|
||||
'u': 'uint',
|
||||
'i': 'int',
|
||||
'c': 'complex',
|
||||
'f': 'float',
|
||||
'b': 'bool',
|
||||
'V': 'void',
|
||||
'O': 'object',
|
||||
'M': 'datetime',
|
||||
'm': 'timedelta',
|
||||
'S': 'bytes',
|
||||
'U': 'str',
|
||||
}
|
||||
|
||||
|
||||
def _kind_name(dtype):
|
||||
try:
|
||||
return _kind_to_stem[dtype.kind]
|
||||
except KeyError as e:
|
||||
raise RuntimeError(
|
||||
"internal dtype error, unknown kind {!r}"
|
||||
.format(dtype.kind)
|
||||
) from None
|
||||
|
||||
|
||||
def __str__(dtype):
|
||||
if dtype.fields is not None:
|
||||
return _struct_str(dtype, include_align=True)
|
||||
elif dtype.subdtype:
|
||||
return _subarray_str(dtype)
|
||||
elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
|
||||
return dtype.str
|
||||
else:
|
||||
return dtype.name
|
||||
|
||||
|
||||
def __repr__(dtype):
|
||||
arg_str = _construction_repr(dtype, include_align=False)
|
||||
if dtype.isalignedstruct:
|
||||
arg_str = arg_str + ", align=True"
|
||||
return "dtype({})".format(arg_str)
|
||||
|
||||
|
||||
def _unpack_field(dtype, offset, title=None):
|
||||
"""
|
||||
Helper function to normalize the items in dtype.fields.
|
||||
|
||||
Call as:
|
||||
|
||||
dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||
"""
|
||||
return dtype, offset, title
|
||||
|
||||
|
||||
def _isunsized(dtype):
|
||||
# PyDataType_ISUNSIZED
|
||||
return dtype.itemsize == 0
|
||||
|
||||
|
||||
def _construction_repr(dtype, include_align=False, short=False):
|
||||
"""
|
||||
Creates a string repr of the dtype, excluding the 'dtype()' part
|
||||
surrounding the object. This object may be a string, a list, or
|
||||
a dict depending on the nature of the dtype. This
|
||||
is the object passed as the first parameter to the dtype
|
||||
constructor, and if no additional constructor parameters are
|
||||
given, will reproduce the exact memory layout.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
short : bool
|
||||
If true, this creates a shorter repr using 'kind' and 'itemsize', instead
|
||||
of the longer type name.
|
||||
|
||||
include_align : bool
|
||||
If true, this includes the 'align=True' parameter
|
||||
inside the struct dtype construction dict when needed. Use this flag
|
||||
if you want a proper repr string without the 'dtype()' part around it.
|
||||
|
||||
If false, this does not preserve the
|
||||
'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
|
||||
struct arrays like the regular repr does, because the 'align'
|
||||
flag is not part of first dtype constructor parameter. This
|
||||
mode is intended for a full 'repr', where the 'align=True' is
|
||||
provided as the second parameter.
|
||||
"""
|
||||
if dtype.fields is not None:
|
||||
return _struct_str(dtype, include_align=include_align)
|
||||
elif dtype.subdtype:
|
||||
return _subarray_str(dtype)
|
||||
else:
|
||||
return _scalar_str(dtype, short=short)
|
||||
|
||||
|
||||
def _scalar_str(dtype, short):
|
||||
byteorder = _byte_order_str(dtype)
|
||||
|
||||
if dtype.type == np.bool_:
|
||||
if short:
|
||||
return "'?'"
|
||||
else:
|
||||
return "'bool'"
|
||||
|
||||
elif dtype.type == np.object_:
|
||||
# The object reference may be different sizes on different
|
||||
# platforms, so it should never include the itemsize here.
|
||||
return "'O'"
|
||||
|
||||
elif dtype.type == np.bytes_:
|
||||
if _isunsized(dtype):
|
||||
return "'S'"
|
||||
else:
|
||||
return "'S%d'" % dtype.itemsize
|
||||
|
||||
elif dtype.type == np.str_:
|
||||
if _isunsized(dtype):
|
||||
return "'%sU'" % byteorder
|
||||
else:
|
||||
return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
|
||||
|
||||
# unlike the other types, subclasses of void are preserved - but
|
||||
# historically the repr does not actually reveal the subclass
|
||||
elif issubclass(dtype.type, np.void):
|
||||
if _isunsized(dtype):
|
||||
return "'V'"
|
||||
else:
|
||||
return "'V%d'" % dtype.itemsize
|
||||
|
||||
elif dtype.type == np.datetime64:
|
||||
return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
||||
|
||||
elif dtype.type == np.timedelta64:
|
||||
return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
||||
|
||||
elif np.issubdtype(dtype, np.number):
|
||||
# Short repr with endianness, like '<f8'
|
||||
if short or dtype.byteorder not in ('=', '|'):
|
||||
return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
|
||||
|
||||
# Longer repr, like 'float64'
|
||||
else:
|
||||
return "'%s%d'" % (_kind_name(dtype), 8*dtype.itemsize)
|
||||
|
||||
elif dtype.isbuiltin == 2:
|
||||
return dtype.type.__name__
|
||||
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Internal error: NumPy dtype unrecognized type number")
|
||||
|
||||
|
||||
def _byte_order_str(dtype):
|
||||
""" Normalize byteorder to '<' or '>' """
|
||||
# hack to obtain the native and swapped byte order characters
|
||||
swapped = np.dtype(int).newbyteorder('S')
|
||||
native = swapped.newbyteorder('S')
|
||||
|
||||
byteorder = dtype.byteorder
|
||||
if byteorder == '=':
|
||||
return native.byteorder
|
||||
if byteorder == 'S':
|
||||
# TODO: this path can never be reached
|
||||
return swapped.byteorder
|
||||
elif byteorder == '|':
|
||||
return ''
|
||||
else:
|
||||
return byteorder
|
||||
|
||||
|
||||
def _datetime_metadata_str(dtype):
|
||||
# TODO: this duplicates the C metastr_to_unicode functionality
|
||||
unit, count = np.datetime_data(dtype)
|
||||
if unit == 'generic':
|
||||
return ''
|
||||
elif count == 1:
|
||||
return '[{}]'.format(unit)
|
||||
else:
|
||||
return '[{}{}]'.format(count, unit)
|
||||
|
||||
|
||||
def _struct_dict_str(dtype, includealignedflag):
|
||||
# unpack the fields dictionary into ls
|
||||
names = dtype.names
|
||||
fld_dtypes = []
|
||||
offsets = []
|
||||
titles = []
|
||||
for name in names:
|
||||
fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||
fld_dtypes.append(fld_dtype)
|
||||
offsets.append(offset)
|
||||
titles.append(title)
|
||||
|
||||
# Build up a string to make the dictionary
|
||||
|
||||
if np.core.arrayprint._get_legacy_print_mode() <= 121:
|
||||
colon = ":"
|
||||
fieldsep = ","
|
||||
else:
|
||||
colon = ": "
|
||||
fieldsep = ", "
|
||||
|
||||
# First, the names
|
||||
ret = "{'names'%s[" % colon
|
||||
ret += fieldsep.join(repr(name) for name in names)
|
||||
|
||||
# Second, the formats
|
||||
ret += "], 'formats'%s[" % colon
|
||||
ret += fieldsep.join(
|
||||
_construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
|
||||
|
||||
# Third, the offsets
|
||||
ret += "], 'offsets'%s[" % colon
|
||||
ret += fieldsep.join("%d" % offset for offset in offsets)
|
||||
|
||||
# Fourth, the titles
|
||||
if any(title is not None for title in titles):
|
||||
ret += "], 'titles'%s[" % colon
|
||||
ret += fieldsep.join(repr(title) for title in titles)
|
||||
|
||||
# Fifth, the itemsize
|
||||
ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
|
||||
|
||||
if (includealignedflag and dtype.isalignedstruct):
|
||||
# Finally, the aligned flag
|
||||
ret += ", 'aligned'%sTrue}" % colon
|
||||
else:
|
||||
ret += "}"
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def _aligned_offset(offset, alignment):
|
||||
# round up offset:
|
||||
return - (-offset // alignment) * alignment
|
||||
|
||||
|
||||
def _is_packed(dtype):
|
||||
"""
|
||||
Checks whether the structured data type in 'dtype'
|
||||
has a simple layout, where all the fields are in order,
|
||||
and follow each other with no alignment padding.
|
||||
|
||||
When this returns true, the dtype can be reconstructed
|
||||
from a list of the field names and dtypes with no additional
|
||||
dtype parameters.
|
||||
|
||||
Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
|
||||
"""
|
||||
align = dtype.isalignedstruct
|
||||
max_alignment = 1
|
||||
total_offset = 0
|
||||
for name in dtype.names:
|
||||
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||
|
||||
if align:
|
||||
total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
|
||||
max_alignment = max(max_alignment, fld_dtype.alignment)
|
||||
|
||||
if fld_offset != total_offset:
|
||||
return False
|
||||
total_offset += fld_dtype.itemsize
|
||||
|
||||
if align:
|
||||
total_offset = _aligned_offset(total_offset, max_alignment)
|
||||
|
||||
if total_offset != dtype.itemsize:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def _struct_list_str(dtype):
|
||||
items = []
|
||||
for name in dtype.names:
|
||||
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||
|
||||
item = "("
|
||||
if title is not None:
|
||||
item += "({!r}, {!r}), ".format(title, name)
|
||||
else:
|
||||
item += "{!r}, ".format(name)
|
||||
# Special case subarray handling here
|
||||
if fld_dtype.subdtype is not None:
|
||||
base, shape = fld_dtype.subdtype
|
||||
item += "{}, {}".format(
|
||||
_construction_repr(base, short=True),
|
||||
shape
|
||||
)
|
||||
else:
|
||||
item += _construction_repr(fld_dtype, short=True)
|
||||
|
||||
item += ")"
|
||||
items.append(item)
|
||||
|
||||
return "[" + ", ".join(items) + "]"
|
||||
|
||||
|
||||
def _struct_str(dtype, include_align):
|
||||
# The list str representation can't include the 'align=' flag,
|
||||
# so if it is requested and the struct has the aligned flag set,
|
||||
# we must use the dict str instead.
|
||||
if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
|
||||
sub = _struct_list_str(dtype)
|
||||
|
||||
else:
|
||||
sub = _struct_dict_str(dtype, include_align)
|
||||
|
||||
# If the data type isn't the default, void, show it
|
||||
if dtype.type != np.void:
|
||||
return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
|
||||
else:
|
||||
return sub
|
||||
|
||||
|
||||
def _subarray_str(dtype):
|
||||
base, shape = dtype.subdtype
|
||||
return "({}, {})".format(
|
||||
_construction_repr(base, short=True),
|
||||
shape
|
||||
)
|
||||
|
||||
|
||||
def _name_includes_bit_suffix(dtype):
|
||||
if dtype.type == np.object_:
|
||||
# pointer size varies by system, best to omit it
|
||||
return False
|
||||
elif dtype.type == np.bool_:
|
||||
# implied
|
||||
return False
|
||||
elif dtype.type is None:
|
||||
return True
|
||||
elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
|
||||
# unspecified
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def _name_get(dtype):
|
||||
# provides dtype.name.__get__, documented as returning a "bit name"
|
||||
|
||||
if dtype.isbuiltin == 2:
|
||||
# user dtypes don't promise to do anything special
|
||||
return dtype.type.__name__
|
||||
|
||||
if dtype.kind == '\x00':
|
||||
name = type(dtype).__name__
|
||||
elif issubclass(dtype.type, np.void):
|
||||
# historically, void subclasses preserve their name, eg `record64`
|
||||
name = dtype.type.__name__
|
||||
else:
|
||||
name = _kind_name(dtype)
|
||||
|
||||
# append bit counts
|
||||
if _name_includes_bit_suffix(dtype):
|
||||
name += "{}".format(dtype.itemsize * 8)
|
||||
|
||||
# append metadata to datetimes
|
||||
if dtype.type in (np.datetime64, np.timedelta64):
|
||||
name += _datetime_metadata_str(dtype)
|
||||
|
||||
return name
|
||||
|
|
@ -0,0 +1,117 @@
|
|||
"""
|
||||
Conversion from ctypes to dtype.
|
||||
|
||||
In an ideal world, we could achieve this through the PEP3118 buffer protocol,
|
||||
something like::
|
||||
|
||||
def dtype_from_ctypes_type(t):
|
||||
# needed to ensure that the shape of `t` is within memoryview.format
|
||||
class DummyStruct(ctypes.Structure):
|
||||
_fields_ = [('a', t)]
|
||||
|
||||
# empty to avoid memory allocation
|
||||
ctype_0 = (DummyStruct * 0)()
|
||||
mv = memoryview(ctype_0)
|
||||
|
||||
# convert the struct, and slice back out the field
|
||||
return _dtype_from_pep3118(mv.format)['a']
|
||||
|
||||
Unfortunately, this fails because:
|
||||
|
||||
* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
|
||||
* PEP3118 cannot represent unions, but both numpy and ctypes can
|
||||
* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
|
||||
"""
|
||||
|
||||
# We delay-import ctypes for distributions that do not include it.
|
||||
# While this module is not used unless the user passes in ctypes
|
||||
# members, it is eagerly imported from numpy/core/__init__.py.
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _from_ctypes_array(t):
|
||||
return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
|
||||
|
||||
|
||||
def _from_ctypes_structure(t):
|
||||
for item in t._fields_:
|
||||
if len(item) > 2:
|
||||
raise TypeError(
|
||||
"ctypes bitfields have no dtype equivalent")
|
||||
|
||||
if hasattr(t, "_pack_"):
|
||||
import ctypes
|
||||
formats = []
|
||||
offsets = []
|
||||
names = []
|
||||
current_offset = 0
|
||||
for fname, ftyp in t._fields_:
|
||||
names.append(fname)
|
||||
formats.append(dtype_from_ctypes_type(ftyp))
|
||||
# Each type has a default offset, this is platform dependent for some types.
|
||||
effective_pack = min(t._pack_, ctypes.alignment(ftyp))
|
||||
current_offset = ((current_offset + effective_pack - 1) // effective_pack) * effective_pack
|
||||
offsets.append(current_offset)
|
||||
current_offset += ctypes.sizeof(ftyp)
|
||||
|
||||
return np.dtype(dict(
|
||||
formats=formats,
|
||||
offsets=offsets,
|
||||
names=names,
|
||||
itemsize=ctypes.sizeof(t)))
|
||||
else:
|
||||
fields = []
|
||||
for fname, ftyp in t._fields_:
|
||||
fields.append((fname, dtype_from_ctypes_type(ftyp)))
|
||||
|
||||
# by default, ctypes structs are aligned
|
||||
return np.dtype(fields, align=True)
|
||||
|
||||
|
||||
def _from_ctypes_scalar(t):
|
||||
"""
|
||||
Return the dtype type with endianness included if it's the case
|
||||
"""
|
||||
if getattr(t, '__ctype_be__', None) is t:
|
||||
return np.dtype('>' + t._type_)
|
||||
elif getattr(t, '__ctype_le__', None) is t:
|
||||
return np.dtype('<' + t._type_)
|
||||
else:
|
||||
return np.dtype(t._type_)
|
||||
|
||||
|
||||
def _from_ctypes_union(t):
|
||||
import ctypes
|
||||
formats = []
|
||||
offsets = []
|
||||
names = []
|
||||
for fname, ftyp in t._fields_:
|
||||
names.append(fname)
|
||||
formats.append(dtype_from_ctypes_type(ftyp))
|
||||
offsets.append(0) # Union fields are offset to 0
|
||||
|
||||
return np.dtype(dict(
|
||||
formats=formats,
|
||||
offsets=offsets,
|
||||
names=names,
|
||||
itemsize=ctypes.sizeof(t)))
|
||||
|
||||
|
||||
def dtype_from_ctypes_type(t):
|
||||
"""
|
||||
Construct a dtype object from a ctypes type
|
||||
"""
|
||||
import _ctypes
|
||||
if issubclass(t, _ctypes.Array):
|
||||
return _from_ctypes_array(t)
|
||||
elif issubclass(t, _ctypes._Pointer):
|
||||
raise TypeError("ctypes pointers have no dtype equivalent")
|
||||
elif issubclass(t, _ctypes.Structure):
|
||||
return _from_ctypes_structure(t)
|
||||
elif issubclass(t, _ctypes.Union):
|
||||
return _from_ctypes_union(t)
|
||||
elif isinstance(getattr(t, '_type_', None), str):
|
||||
return _from_ctypes_scalar(t)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Unknown ctypes type {}".format(t.__name__))
|
||||
|
|
@ -0,0 +1,172 @@
|
|||
"""
|
||||
Various richly-typed exceptions, that also help us deal with string formatting
|
||||
in python where it's easier.
|
||||
|
||||
By putting the formatting in `__str__`, we also avoid paying the cost for
|
||||
users who silence the exceptions.
|
||||
"""
|
||||
from .._utils import set_module
|
||||
|
||||
def _unpack_tuple(tup):
|
||||
if len(tup) == 1:
|
||||
return tup[0]
|
||||
else:
|
||||
return tup
|
||||
|
||||
|
||||
def _display_as_base(cls):
|
||||
"""
|
||||
A decorator that makes an exception class look like its base.
|
||||
|
||||
We use this to hide subclasses that are implementation details - the user
|
||||
should catch the base type, which is what the traceback will show them.
|
||||
|
||||
Classes decorated with this decorator are subject to removal without a
|
||||
deprecation warning.
|
||||
"""
|
||||
assert issubclass(cls, Exception)
|
||||
cls.__name__ = cls.__base__.__name__
|
||||
return cls
|
||||
|
||||
|
||||
class UFuncTypeError(TypeError):
|
||||
""" Base class for all ufunc exceptions """
|
||||
def __init__(self, ufunc):
|
||||
self.ufunc = ufunc
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncNoLoopError(UFuncTypeError):
|
||||
""" Thrown when a ufunc loop cannot be found """
|
||||
def __init__(self, ufunc, dtypes):
|
||||
super().__init__(ufunc)
|
||||
self.dtypes = tuple(dtypes)
|
||||
|
||||
def __str__(self):
|
||||
return (
|
||||
"ufunc {!r} did not contain a loop with signature matching types "
|
||||
"{!r} -> {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__,
|
||||
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
|
||||
_unpack_tuple(self.dtypes[self.ufunc.nin:])
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
|
||||
""" Thrown when a binary resolution fails """
|
||||
def __init__(self, ufunc, dtypes):
|
||||
super().__init__(ufunc, dtypes)
|
||||
assert len(self.dtypes) == 2
|
||||
|
||||
def __str__(self):
|
||||
return (
|
||||
"ufunc {!r} cannot use operands with types {!r} and {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, *self.dtypes
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncCastingError(UFuncTypeError):
|
||||
def __init__(self, ufunc, casting, from_, to):
|
||||
super().__init__(ufunc)
|
||||
self.casting = casting
|
||||
self.from_ = from_
|
||||
self.to = to
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncInputCastingError(_UFuncCastingError):
|
||||
""" Thrown when a ufunc input cannot be casted """
|
||||
def __init__(self, ufunc, casting, from_, to, i):
|
||||
super().__init__(ufunc, casting, from_, to)
|
||||
self.in_i = i
|
||||
|
||||
def __str__(self):
|
||||
# only show the number if more than one input exists
|
||||
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
|
||||
return (
|
||||
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
|
||||
"rule {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncOutputCastingError(_UFuncCastingError):
|
||||
""" Thrown when a ufunc output cannot be casted """
|
||||
def __init__(self, ufunc, casting, from_, to, i):
|
||||
super().__init__(ufunc, casting, from_, to)
|
||||
self.out_i = i
|
||||
|
||||
def __str__(self):
|
||||
# only show the number if more than one output exists
|
||||
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
|
||||
return (
|
||||
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
|
||||
"rule {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _ArrayMemoryError(MemoryError):
|
||||
""" Thrown when an array cannot be allocated"""
|
||||
def __init__(self, shape, dtype):
|
||||
self.shape = shape
|
||||
self.dtype = dtype
|
||||
|
||||
@property
|
||||
def _total_size(self):
|
||||
num_bytes = self.dtype.itemsize
|
||||
for dim in self.shape:
|
||||
num_bytes *= dim
|
||||
return num_bytes
|
||||
|
||||
@staticmethod
|
||||
def _size_to_string(num_bytes):
|
||||
""" Convert a number of bytes into a binary size string """
|
||||
|
||||
# https://en.wikipedia.org/wiki/Binary_prefix
|
||||
LOG2_STEP = 10
|
||||
STEP = 1024
|
||||
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
|
||||
|
||||
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
|
||||
unit_val = 1 << (unit_i * LOG2_STEP)
|
||||
n_units = num_bytes / unit_val
|
||||
del unit_val
|
||||
|
||||
# ensure we pick a unit that is correct after rounding
|
||||
if round(n_units) == STEP:
|
||||
unit_i += 1
|
||||
n_units /= STEP
|
||||
|
||||
# deal with sizes so large that we don't have units for them
|
||||
if unit_i >= len(units):
|
||||
new_unit_i = len(units) - 1
|
||||
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
|
||||
unit_i = new_unit_i
|
||||
|
||||
unit_name = units[unit_i]
|
||||
# format with a sensible number of digits
|
||||
if unit_i == 0:
|
||||
# no decimal point on bytes
|
||||
return '{:.0f} {}'.format(n_units, unit_name)
|
||||
elif round(n_units) < 1000:
|
||||
# 3 significant figures, if none are dropped to the left of the .
|
||||
return '{:#.3g} {}'.format(n_units, unit_name)
|
||||
else:
|
||||
# just give all the digits otherwise
|
||||
return '{:#.0f} {}'.format(n_units, unit_name)
|
||||
|
||||
def __str__(self):
|
||||
size_str = self._size_to_string(self._total_size)
|
||||
return (
|
||||
"Unable to allocate {} for an array with shape {} and data type {}"
|
||||
.format(size_str, self.shape, self.dtype)
|
||||
)
|
||||
935
AppDir/usr/lib/python3.12/site-packages/numpy/core/_internal.py
Normal file
935
AppDir/usr/lib/python3.12/site-packages/numpy/core/_internal.py
Normal file
|
|
@ -0,0 +1,935 @@
|
|||
"""
|
||||
A place for internal code
|
||||
|
||||
Some things are more easily handled Python.
|
||||
|
||||
"""
|
||||
import ast
|
||||
import re
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from ..exceptions import DTypePromotionError
|
||||
from .multiarray import dtype, array, ndarray, promote_types
|
||||
try:
|
||||
import ctypes
|
||||
except ImportError:
|
||||
ctypes = None
|
||||
|
||||
IS_PYPY = sys.implementation.name == 'pypy'
|
||||
|
||||
if sys.byteorder == 'little':
|
||||
_nbo = '<'
|
||||
else:
|
||||
_nbo = '>'
|
||||
|
||||
def _makenames_list(adict, align):
|
||||
allfields = []
|
||||
|
||||
for fname, obj in adict.items():
|
||||
n = len(obj)
|
||||
if not isinstance(obj, tuple) or n not in (2, 3):
|
||||
raise ValueError("entry not a 2- or 3- tuple")
|
||||
if n > 2 and obj[2] == fname:
|
||||
continue
|
||||
num = int(obj[1])
|
||||
if num < 0:
|
||||
raise ValueError("invalid offset.")
|
||||
format = dtype(obj[0], align=align)
|
||||
if n > 2:
|
||||
title = obj[2]
|
||||
else:
|
||||
title = None
|
||||
allfields.append((fname, format, num, title))
|
||||
# sort by offsets
|
||||
allfields.sort(key=lambda x: x[2])
|
||||
names = [x[0] for x in allfields]
|
||||
formats = [x[1] for x in allfields]
|
||||
offsets = [x[2] for x in allfields]
|
||||
titles = [x[3] for x in allfields]
|
||||
|
||||
return names, formats, offsets, titles
|
||||
|
||||
# Called in PyArray_DescrConverter function when
|
||||
# a dictionary without "names" and "formats"
|
||||
# fields is used as a data-type descriptor.
|
||||
def _usefields(adict, align):
|
||||
try:
|
||||
names = adict[-1]
|
||||
except KeyError:
|
||||
names = None
|
||||
if names is None:
|
||||
names, formats, offsets, titles = _makenames_list(adict, align)
|
||||
else:
|
||||
formats = []
|
||||
offsets = []
|
||||
titles = []
|
||||
for name in names:
|
||||
res = adict[name]
|
||||
formats.append(res[0])
|
||||
offsets.append(res[1])
|
||||
if len(res) > 2:
|
||||
titles.append(res[2])
|
||||
else:
|
||||
titles.append(None)
|
||||
|
||||
return dtype({"names": names,
|
||||
"formats": formats,
|
||||
"offsets": offsets,
|
||||
"titles": titles}, align)
|
||||
|
||||
|
||||
# construct an array_protocol descriptor list
|
||||
# from the fields attribute of a descriptor
|
||||
# This calls itself recursively but should eventually hit
|
||||
# a descriptor that has no fields and then return
|
||||
# a simple typestring
|
||||
|
||||
def _array_descr(descriptor):
|
||||
fields = descriptor.fields
|
||||
if fields is None:
|
||||
subdtype = descriptor.subdtype
|
||||
if subdtype is None:
|
||||
if descriptor.metadata is None:
|
||||
return descriptor.str
|
||||
else:
|
||||
new = descriptor.metadata.copy()
|
||||
if new:
|
||||
return (descriptor.str, new)
|
||||
else:
|
||||
return descriptor.str
|
||||
else:
|
||||
return (_array_descr(subdtype[0]), subdtype[1])
|
||||
|
||||
names = descriptor.names
|
||||
ordered_fields = [fields[x] + (x,) for x in names]
|
||||
result = []
|
||||
offset = 0
|
||||
for field in ordered_fields:
|
||||
if field[1] > offset:
|
||||
num = field[1] - offset
|
||||
result.append(('', f'|V{num}'))
|
||||
offset += num
|
||||
elif field[1] < offset:
|
||||
raise ValueError(
|
||||
"dtype.descr is not defined for types with overlapping or "
|
||||
"out-of-order fields")
|
||||
if len(field) > 3:
|
||||
name = (field[2], field[3])
|
||||
else:
|
||||
name = field[2]
|
||||
if field[0].subdtype:
|
||||
tup = (name, _array_descr(field[0].subdtype[0]),
|
||||
field[0].subdtype[1])
|
||||
else:
|
||||
tup = (name, _array_descr(field[0]))
|
||||
offset += field[0].itemsize
|
||||
result.append(tup)
|
||||
|
||||
if descriptor.itemsize > offset:
|
||||
num = descriptor.itemsize - offset
|
||||
result.append(('', f'|V{num}'))
|
||||
|
||||
return result
|
||||
|
||||
# Build a new array from the information in a pickle.
|
||||
# Note that the name numpy.core._internal._reconstruct is embedded in
|
||||
# pickles of ndarrays made with NumPy before release 1.0
|
||||
# so don't remove the name here, or you'll
|
||||
# break backward compatibility.
|
||||
def _reconstruct(subtype, shape, dtype):
|
||||
return ndarray.__new__(subtype, shape, dtype)
|
||||
|
||||
|
||||
# format_re was originally from numarray by J. Todd Miller
|
||||
|
||||
format_re = re.compile(r'(?P<order1>[<>|=]?)'
|
||||
r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
|
||||
r'(?P<order2>[<>|=]?)'
|
||||
r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
|
||||
sep_re = re.compile(r'\s*,\s*')
|
||||
space_re = re.compile(r'\s+$')
|
||||
|
||||
# astr is a string (perhaps comma separated)
|
||||
|
||||
_convorder = {'=': _nbo}
|
||||
|
||||
def _commastring(astr):
|
||||
startindex = 0
|
||||
result = []
|
||||
while startindex < len(astr):
|
||||
mo = format_re.match(astr, pos=startindex)
|
||||
try:
|
||||
(order1, repeats, order2, dtype) = mo.groups()
|
||||
except (TypeError, AttributeError):
|
||||
raise ValueError(
|
||||
f'format number {len(result)+1} of "{astr}" is not recognized'
|
||||
) from None
|
||||
startindex = mo.end()
|
||||
# Separator or ending padding
|
||||
if startindex < len(astr):
|
||||
if space_re.match(astr, pos=startindex):
|
||||
startindex = len(astr)
|
||||
else:
|
||||
mo = sep_re.match(astr, pos=startindex)
|
||||
if not mo:
|
||||
raise ValueError(
|
||||
'format number %d of "%s" is not recognized' %
|
||||
(len(result)+1, astr))
|
||||
startindex = mo.end()
|
||||
|
||||
if order2 == '':
|
||||
order = order1
|
||||
elif order1 == '':
|
||||
order = order2
|
||||
else:
|
||||
order1 = _convorder.get(order1, order1)
|
||||
order2 = _convorder.get(order2, order2)
|
||||
if (order1 != order2):
|
||||
raise ValueError(
|
||||
'inconsistent byte-order specification %s and %s' %
|
||||
(order1, order2))
|
||||
order = order1
|
||||
|
||||
if order in ('|', '=', _nbo):
|
||||
order = ''
|
||||
dtype = order + dtype
|
||||
if (repeats == ''):
|
||||
newitem = dtype
|
||||
else:
|
||||
newitem = (dtype, ast.literal_eval(repeats))
|
||||
result.append(newitem)
|
||||
|
||||
return result
|
||||
|
||||
class dummy_ctype:
|
||||
def __init__(self, cls):
|
||||
self._cls = cls
|
||||
def __mul__(self, other):
|
||||
return self
|
||||
def __call__(self, *other):
|
||||
return self._cls(other)
|
||||
def __eq__(self, other):
|
||||
return self._cls == other._cls
|
||||
def __ne__(self, other):
|
||||
return self._cls != other._cls
|
||||
|
||||
def _getintp_ctype():
|
||||
val = _getintp_ctype.cache
|
||||
if val is not None:
|
||||
return val
|
||||
if ctypes is None:
|
||||
import numpy as np
|
||||
val = dummy_ctype(np.intp)
|
||||
else:
|
||||
char = dtype('p').char
|
||||
if char == 'i':
|
||||
val = ctypes.c_int
|
||||
elif char == 'l':
|
||||
val = ctypes.c_long
|
||||
elif char == 'q':
|
||||
val = ctypes.c_longlong
|
||||
else:
|
||||
val = ctypes.c_long
|
||||
_getintp_ctype.cache = val
|
||||
return val
|
||||
_getintp_ctype.cache = None
|
||||
|
||||
# Used for .ctypes attribute of ndarray
|
||||
|
||||
class _missing_ctypes:
|
||||
def cast(self, num, obj):
|
||||
return num.value
|
||||
|
||||
class c_void_p:
|
||||
def __init__(self, ptr):
|
||||
self.value = ptr
|
||||
|
||||
|
||||
class _ctypes:
|
||||
def __init__(self, array, ptr=None):
|
||||
self._arr = array
|
||||
|
||||
if ctypes:
|
||||
self._ctypes = ctypes
|
||||
self._data = self._ctypes.c_void_p(ptr)
|
||||
else:
|
||||
# fake a pointer-like object that holds onto the reference
|
||||
self._ctypes = _missing_ctypes()
|
||||
self._data = self._ctypes.c_void_p(ptr)
|
||||
self._data._objects = array
|
||||
|
||||
if self._arr.ndim == 0:
|
||||
self._zerod = True
|
||||
else:
|
||||
self._zerod = False
|
||||
|
||||
def data_as(self, obj):
|
||||
"""
|
||||
Return the data pointer cast to a particular c-types object.
|
||||
For example, calling ``self._as_parameter_`` is equivalent to
|
||||
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a
|
||||
pointer to a ctypes array of floating-point data:
|
||||
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
|
||||
|
||||
The returned pointer will keep a reference to the array.
|
||||
"""
|
||||
# _ctypes.cast function causes a circular reference of self._data in
|
||||
# self._data._objects. Attributes of self._data cannot be released
|
||||
# until gc.collect is called. Make a copy of the pointer first then let
|
||||
# it hold the array reference. This is a workaround to circumvent the
|
||||
# CPython bug https://bugs.python.org/issue12836
|
||||
ptr = self._ctypes.cast(self._data, obj)
|
||||
ptr._arr = self._arr
|
||||
return ptr
|
||||
|
||||
def shape_as(self, obj):
|
||||
"""
|
||||
Return the shape tuple as an array of some other c-types
|
||||
type. For example: ``self.shape_as(ctypes.c_short)``.
|
||||
"""
|
||||
if self._zerod:
|
||||
return None
|
||||
return (obj*self._arr.ndim)(*self._arr.shape)
|
||||
|
||||
def strides_as(self, obj):
|
||||
"""
|
||||
Return the strides tuple as an array of some other
|
||||
c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
|
||||
"""
|
||||
if self._zerod:
|
||||
return None
|
||||
return (obj*self._arr.ndim)(*self._arr.strides)
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
"""
|
||||
A pointer to the memory area of the array as a Python integer.
|
||||
This memory area may contain data that is not aligned, or not in correct
|
||||
byte-order. The memory area may not even be writeable. The array
|
||||
flags and data-type of this array should be respected when passing this
|
||||
attribute to arbitrary C-code to avoid trouble that can include Python
|
||||
crashing. User Beware! The value of this attribute is exactly the same
|
||||
as ``self._array_interface_['data'][0]``.
|
||||
|
||||
Note that unlike ``data_as``, a reference will not be kept to the array:
|
||||
code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
|
||||
pointer to a deallocated array, and should be spelt
|
||||
``(a + b).ctypes.data_as(ctypes.c_void_p)``
|
||||
"""
|
||||
return self._data.value
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
"""
|
||||
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||
the basetype is the C-integer corresponding to ``dtype('p')`` on this
|
||||
platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
|
||||
`ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
|
||||
the platform. The ctypes array contains the shape of
|
||||
the underlying array.
|
||||
"""
|
||||
return self.shape_as(_getintp_ctype())
|
||||
|
||||
@property
|
||||
def strides(self):
|
||||
"""
|
||||
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||
the basetype is the same as for the shape attribute. This ctypes array
|
||||
contains the strides information from the underlying array. This strides
|
||||
information is important for showing how many bytes must be jumped to
|
||||
get to the next element in the array.
|
||||
"""
|
||||
return self.strides_as(_getintp_ctype())
|
||||
|
||||
@property
|
||||
def _as_parameter_(self):
|
||||
"""
|
||||
Overrides the ctypes semi-magic method
|
||||
|
||||
Enables `c_func(some_array.ctypes)`
|
||||
"""
|
||||
return self.data_as(ctypes.c_void_p)
|
||||
|
||||
# Numpy 1.21.0, 2021-05-18
|
||||
|
||||
def get_data(self):
|
||||
"""Deprecated getter for the `_ctypes.data` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_data" is deprecated. Use "data" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.data
|
||||
|
||||
def get_shape(self):
|
||||
"""Deprecated getter for the `_ctypes.shape` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_shape" is deprecated. Use "shape" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.shape
|
||||
|
||||
def get_strides(self):
|
||||
"""Deprecated getter for the `_ctypes.strides` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_strides" is deprecated. Use "strides" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.strides
|
||||
|
||||
def get_as_parameter(self):
|
||||
"""Deprecated getter for the `_ctypes._as_parameter_` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn(
|
||||
'"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
|
||||
DeprecationWarning, stacklevel=2,
|
||||
)
|
||||
return self._as_parameter_
|
||||
|
||||
|
||||
def _newnames(datatype, order):
|
||||
"""
|
||||
Given a datatype and an order object, return a new names tuple, with the
|
||||
order indicated
|
||||
"""
|
||||
oldnames = datatype.names
|
||||
nameslist = list(oldnames)
|
||||
if isinstance(order, str):
|
||||
order = [order]
|
||||
seen = set()
|
||||
if isinstance(order, (list, tuple)):
|
||||
for name in order:
|
||||
try:
|
||||
nameslist.remove(name)
|
||||
except ValueError:
|
||||
if name in seen:
|
||||
raise ValueError(f"duplicate field name: {name}") from None
|
||||
else:
|
||||
raise ValueError(f"unknown field name: {name}") from None
|
||||
seen.add(name)
|
||||
return tuple(list(order) + nameslist)
|
||||
raise ValueError(f"unsupported order value: {order}")
|
||||
|
||||
def _copy_fields(ary):
|
||||
"""Return copy of structured array with padding between fields removed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ary : ndarray
|
||||
Structured array from which to remove padding bytes
|
||||
|
||||
Returns
|
||||
-------
|
||||
ary_copy : ndarray
|
||||
Copy of ary with padding bytes removed
|
||||
"""
|
||||
dt = ary.dtype
|
||||
copy_dtype = {'names': dt.names,
|
||||
'formats': [dt.fields[name][0] for name in dt.names]}
|
||||
return array(ary, dtype=copy_dtype, copy=True)
|
||||
|
||||
def _promote_fields(dt1, dt2):
|
||||
""" Perform type promotion for two structured dtypes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dt1 : structured dtype
|
||||
First dtype.
|
||||
dt2 : structured dtype
|
||||
Second dtype.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : dtype
|
||||
The promoted dtype
|
||||
|
||||
Notes
|
||||
-----
|
||||
If one of the inputs is aligned, the result will be. The titles of
|
||||
both descriptors must match (point to the same field).
|
||||
"""
|
||||
# Both must be structured and have the same names in the same order
|
||||
if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
|
||||
raise DTypePromotionError(
|
||||
f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
|
||||
|
||||
# if both are identical, we can (maybe!) just return the same dtype.
|
||||
identical = dt1 is dt2
|
||||
new_fields = []
|
||||
for name in dt1.names:
|
||||
field1 = dt1.fields[name]
|
||||
field2 = dt2.fields[name]
|
||||
new_descr = promote_types(field1[0], field2[0])
|
||||
identical = identical and new_descr is field1[0]
|
||||
|
||||
# Check that the titles match (if given):
|
||||
if field1[2:] != field2[2:]:
|
||||
raise DTypePromotionError(
|
||||
f"field titles of field '{name}' mismatch")
|
||||
if len(field1) == 2:
|
||||
new_fields.append((name, new_descr))
|
||||
else:
|
||||
new_fields.append(((field1[2], name), new_descr))
|
||||
|
||||
res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
|
||||
|
||||
# Might as well preserve identity (and metadata) if the dtype is identical
|
||||
# and the itemsize, offsets are also unmodified. This could probably be
|
||||
# sped up, but also probably just be removed entirely.
|
||||
if identical and res.itemsize == dt1.itemsize:
|
||||
for name in dt1.names:
|
||||
if dt1.fields[name][1] != res.fields[name][1]:
|
||||
return res # the dtype changed.
|
||||
return dt1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def _getfield_is_safe(oldtype, newtype, offset):
|
||||
""" Checks safety of getfield for object arrays.
|
||||
|
||||
As in _view_is_safe, we need to check that memory containing objects is not
|
||||
reinterpreted as a non-object datatype and vice versa.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
oldtype : data-type
|
||||
Data type of the original ndarray.
|
||||
newtype : data-type
|
||||
Data type of the field being accessed by ndarray.getfield
|
||||
offset : int
|
||||
Offset of the field being accessed by ndarray.getfield
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If the field access is invalid
|
||||
|
||||
"""
|
||||
if newtype.hasobject or oldtype.hasobject:
|
||||
if offset == 0 and newtype == oldtype:
|
||||
return
|
||||
if oldtype.names is not None:
|
||||
for name in oldtype.names:
|
||||
if (oldtype.fields[name][1] == offset and
|
||||
oldtype.fields[name][0] == newtype):
|
||||
return
|
||||
raise TypeError("Cannot get/set field of an object array")
|
||||
return
|
||||
|
||||
def _view_is_safe(oldtype, newtype):
|
||||
""" Checks safety of a view involving object arrays, for example when
|
||||
doing::
|
||||
|
||||
np.zeros(10, dtype=oldtype).view(newtype)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
oldtype : data-type
|
||||
Data type of original ndarray
|
||||
newtype : data-type
|
||||
Data type of the view
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If the new type is incompatible with the old type.
|
||||
|
||||
"""
|
||||
|
||||
# if the types are equivalent, there is no problem.
|
||||
# for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
|
||||
if oldtype == newtype:
|
||||
return
|
||||
|
||||
if newtype.hasobject or oldtype.hasobject:
|
||||
raise TypeError("Cannot change data-type for object array.")
|
||||
return
|
||||
|
||||
# Given a string containing a PEP 3118 format specifier,
|
||||
# construct a NumPy dtype
|
||||
|
||||
_pep3118_native_map = {
|
||||
'?': '?',
|
||||
'c': 'S1',
|
||||
'b': 'b',
|
||||
'B': 'B',
|
||||
'h': 'h',
|
||||
'H': 'H',
|
||||
'i': 'i',
|
||||
'I': 'I',
|
||||
'l': 'l',
|
||||
'L': 'L',
|
||||
'q': 'q',
|
||||
'Q': 'Q',
|
||||
'e': 'e',
|
||||
'f': 'f',
|
||||
'd': 'd',
|
||||
'g': 'g',
|
||||
'Zf': 'F',
|
||||
'Zd': 'D',
|
||||
'Zg': 'G',
|
||||
's': 'S',
|
||||
'w': 'U',
|
||||
'O': 'O',
|
||||
'x': 'V', # padding
|
||||
}
|
||||
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
|
||||
|
||||
_pep3118_standard_map = {
|
||||
'?': '?',
|
||||
'c': 'S1',
|
||||
'b': 'b',
|
||||
'B': 'B',
|
||||
'h': 'i2',
|
||||
'H': 'u2',
|
||||
'i': 'i4',
|
||||
'I': 'u4',
|
||||
'l': 'i4',
|
||||
'L': 'u4',
|
||||
'q': 'i8',
|
||||
'Q': 'u8',
|
||||
'e': 'f2',
|
||||
'f': 'f',
|
||||
'd': 'd',
|
||||
'Zf': 'F',
|
||||
'Zd': 'D',
|
||||
's': 'S',
|
||||
'w': 'U',
|
||||
'O': 'O',
|
||||
'x': 'V', # padding
|
||||
}
|
||||
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
|
||||
|
||||
_pep3118_unsupported_map = {
|
||||
'u': 'UCS-2 strings',
|
||||
'&': 'pointers',
|
||||
't': 'bitfields',
|
||||
'X': 'function pointers',
|
||||
}
|
||||
|
||||
class _Stream:
|
||||
def __init__(self, s):
|
||||
self.s = s
|
||||
self.byteorder = '@'
|
||||
|
||||
def advance(self, n):
|
||||
res = self.s[:n]
|
||||
self.s = self.s[n:]
|
||||
return res
|
||||
|
||||
def consume(self, c):
|
||||
if self.s[:len(c)] == c:
|
||||
self.advance(len(c))
|
||||
return True
|
||||
return False
|
||||
|
||||
def consume_until(self, c):
|
||||
if callable(c):
|
||||
i = 0
|
||||
while i < len(self.s) and not c(self.s[i]):
|
||||
i = i + 1
|
||||
return self.advance(i)
|
||||
else:
|
||||
i = self.s.index(c)
|
||||
res = self.advance(i)
|
||||
self.advance(len(c))
|
||||
return res
|
||||
|
||||
@property
|
||||
def next(self):
|
||||
return self.s[0]
|
||||
|
||||
def __bool__(self):
|
||||
return bool(self.s)
|
||||
|
||||
|
||||
def _dtype_from_pep3118(spec):
|
||||
stream = _Stream(spec)
|
||||
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
|
||||
return dtype
|
||||
|
||||
def __dtype_from_pep3118(stream, is_subdtype):
|
||||
field_spec = dict(
|
||||
names=[],
|
||||
formats=[],
|
||||
offsets=[],
|
||||
itemsize=0
|
||||
)
|
||||
offset = 0
|
||||
common_alignment = 1
|
||||
is_padding = False
|
||||
|
||||
# Parse spec
|
||||
while stream:
|
||||
value = None
|
||||
|
||||
# End of structure, bail out to upper level
|
||||
if stream.consume('}'):
|
||||
break
|
||||
|
||||
# Sub-arrays (1)
|
||||
shape = None
|
||||
if stream.consume('('):
|
||||
shape = stream.consume_until(')')
|
||||
shape = tuple(map(int, shape.split(',')))
|
||||
|
||||
# Byte order
|
||||
if stream.next in ('@', '=', '<', '>', '^', '!'):
|
||||
byteorder = stream.advance(1)
|
||||
if byteorder == '!':
|
||||
byteorder = '>'
|
||||
stream.byteorder = byteorder
|
||||
|
||||
# Byte order characters also control native vs. standard type sizes
|
||||
if stream.byteorder in ('@', '^'):
|
||||
type_map = _pep3118_native_map
|
||||
type_map_chars = _pep3118_native_typechars
|
||||
else:
|
||||
type_map = _pep3118_standard_map
|
||||
type_map_chars = _pep3118_standard_typechars
|
||||
|
||||
# Item sizes
|
||||
itemsize_str = stream.consume_until(lambda c: not c.isdigit())
|
||||
if itemsize_str:
|
||||
itemsize = int(itemsize_str)
|
||||
else:
|
||||
itemsize = 1
|
||||
|
||||
# Data types
|
||||
is_padding = False
|
||||
|
||||
if stream.consume('T{'):
|
||||
value, align = __dtype_from_pep3118(
|
||||
stream, is_subdtype=True)
|
||||
elif stream.next in type_map_chars:
|
||||
if stream.next == 'Z':
|
||||
typechar = stream.advance(2)
|
||||
else:
|
||||
typechar = stream.advance(1)
|
||||
|
||||
is_padding = (typechar == 'x')
|
||||
dtypechar = type_map[typechar]
|
||||
if dtypechar in 'USV':
|
||||
dtypechar += '%d' % itemsize
|
||||
itemsize = 1
|
||||
numpy_byteorder = {'@': '=', '^': '='}.get(
|
||||
stream.byteorder, stream.byteorder)
|
||||
value = dtype(numpy_byteorder + dtypechar)
|
||||
align = value.alignment
|
||||
elif stream.next in _pep3118_unsupported_map:
|
||||
desc = _pep3118_unsupported_map[stream.next]
|
||||
raise NotImplementedError(
|
||||
"Unrepresentable PEP 3118 data type {!r} ({})"
|
||||
.format(stream.next, desc))
|
||||
else:
|
||||
raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s)
|
||||
|
||||
#
|
||||
# Native alignment may require padding
|
||||
#
|
||||
# Here we assume that the presence of a '@' character implicitly implies
|
||||
# that the start of the array is *already* aligned.
|
||||
#
|
||||
extra_offset = 0
|
||||
if stream.byteorder == '@':
|
||||
start_padding = (-offset) % align
|
||||
intra_padding = (-value.itemsize) % align
|
||||
|
||||
offset += start_padding
|
||||
|
||||
if intra_padding != 0:
|
||||
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
|
||||
# Inject internal padding to the end of the sub-item
|
||||
value = _add_trailing_padding(value, intra_padding)
|
||||
else:
|
||||
# We can postpone the injection of internal padding,
|
||||
# as the item appears at most once
|
||||
extra_offset += intra_padding
|
||||
|
||||
# Update common alignment
|
||||
common_alignment = _lcm(align, common_alignment)
|
||||
|
||||
# Convert itemsize to sub-array
|
||||
if itemsize != 1:
|
||||
value = dtype((value, (itemsize,)))
|
||||
|
||||
# Sub-arrays (2)
|
||||
if shape is not None:
|
||||
value = dtype((value, shape))
|
||||
|
||||
# Field name
|
||||
if stream.consume(':'):
|
||||
name = stream.consume_until(':')
|
||||
else:
|
||||
name = None
|
||||
|
||||
if not (is_padding and name is None):
|
||||
if name is not None and name in field_spec['names']:
|
||||
raise RuntimeError(f"Duplicate field name '{name}' in PEP3118 format")
|
||||
field_spec['names'].append(name)
|
||||
field_spec['formats'].append(value)
|
||||
field_spec['offsets'].append(offset)
|
||||
|
||||
offset += value.itemsize
|
||||
offset += extra_offset
|
||||
|
||||
field_spec['itemsize'] = offset
|
||||
|
||||
# extra final padding for aligned types
|
||||
if stream.byteorder == '@':
|
||||
field_spec['itemsize'] += (-offset) % common_alignment
|
||||
|
||||
# Check if this was a simple 1-item type, and unwrap it
|
||||
if (field_spec['names'] == [None]
|
||||
and field_spec['offsets'][0] == 0
|
||||
and field_spec['itemsize'] == field_spec['formats'][0].itemsize
|
||||
and not is_subdtype):
|
||||
ret = field_spec['formats'][0]
|
||||
else:
|
||||
_fix_names(field_spec)
|
||||
ret = dtype(field_spec)
|
||||
|
||||
# Finished
|
||||
return ret, common_alignment
|
||||
|
||||
def _fix_names(field_spec):
|
||||
""" Replace names which are None with the next unused f%d name """
|
||||
names = field_spec['names']
|
||||
for i, name in enumerate(names):
|
||||
if name is not None:
|
||||
continue
|
||||
|
||||
j = 0
|
||||
while True:
|
||||
name = f'f{j}'
|
||||
if name not in names:
|
||||
break
|
||||
j = j + 1
|
||||
names[i] = name
|
||||
|
||||
def _add_trailing_padding(value, padding):
|
||||
"""Inject the specified number of padding bytes at the end of a dtype"""
|
||||
if value.fields is None:
|
||||
field_spec = dict(
|
||||
names=['f0'],
|
||||
formats=[value],
|
||||
offsets=[0],
|
||||
itemsize=value.itemsize
|
||||
)
|
||||
else:
|
||||
fields = value.fields
|
||||
names = value.names
|
||||
field_spec = dict(
|
||||
names=names,
|
||||
formats=[fields[name][0] for name in names],
|
||||
offsets=[fields[name][1] for name in names],
|
||||
itemsize=value.itemsize
|
||||
)
|
||||
|
||||
field_spec['itemsize'] += padding
|
||||
return dtype(field_spec)
|
||||
|
||||
def _prod(a):
|
||||
p = 1
|
||||
for x in a:
|
||||
p *= x
|
||||
return p
|
||||
|
||||
def _gcd(a, b):
|
||||
"""Calculate the greatest common divisor of a and b"""
|
||||
while b:
|
||||
a, b = b, a % b
|
||||
return a
|
||||
|
||||
def _lcm(a, b):
|
||||
return a // _gcd(a, b) * b
|
||||
|
||||
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
|
||||
""" Format the error message for when __array_ufunc__ gives up. """
|
||||
args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
|
||||
['{}={!r}'.format(k, v)
|
||||
for k, v in kwargs.items()])
|
||||
args = inputs + kwargs.get('out', ())
|
||||
types_string = ', '.join(repr(type(arg).__name__) for arg in args)
|
||||
return ('operand type(s) all returned NotImplemented from '
|
||||
'__array_ufunc__({!r}, {!r}, {}): {}'
|
||||
.format(ufunc, method, args_string, types_string))
|
||||
|
||||
|
||||
def array_function_errmsg_formatter(public_api, types):
|
||||
""" Format the error message for when __array_ufunc__ gives up. """
|
||||
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
|
||||
return ("no implementation found for '{}' on types that implement "
|
||||
'__array_function__: {}'.format(func_name, list(types)))
|
||||
|
||||
|
||||
def _ufunc_doc_signature_formatter(ufunc):
|
||||
"""
|
||||
Builds a signature string which resembles PEP 457
|
||||
|
||||
This is used to construct the first line of the docstring
|
||||
"""
|
||||
|
||||
# input arguments are simple
|
||||
if ufunc.nin == 1:
|
||||
in_args = 'x'
|
||||
else:
|
||||
in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
|
||||
|
||||
# output arguments are both keyword or positional
|
||||
if ufunc.nout == 0:
|
||||
out_args = ', /, out=()'
|
||||
elif ufunc.nout == 1:
|
||||
out_args = ', /, out=None'
|
||||
else:
|
||||
out_args = '[, {positional}], / [, out={default}]'.format(
|
||||
positional=', '.join(
|
||||
'out{}'.format(i+1) for i in range(ufunc.nout)),
|
||||
default=repr((None,)*ufunc.nout)
|
||||
)
|
||||
|
||||
# keyword only args depend on whether this is a gufunc
|
||||
kwargs = (
|
||||
", casting='same_kind'"
|
||||
", order='K'"
|
||||
", dtype=None"
|
||||
", subok=True"
|
||||
)
|
||||
|
||||
# NOTE: gufuncs may or may not support the `axis` parameter
|
||||
if ufunc.signature is None:
|
||||
kwargs = f", where=True{kwargs}[, signature, extobj]"
|
||||
else:
|
||||
kwargs += "[, signature, extobj, axes, axis]"
|
||||
|
||||
# join all the parts together
|
||||
return '{name}({in_args}{out_args}, *{kwargs})'.format(
|
||||
name=ufunc.__name__,
|
||||
in_args=in_args,
|
||||
out_args=out_args,
|
||||
kwargs=kwargs
|
||||
)
|
||||
|
||||
|
||||
def npy_ctypes_check(cls):
|
||||
# determine if a class comes from ctypes, in order to work around
|
||||
# a bug in the buffer protocol for those objects, bpo-10746
|
||||
try:
|
||||
# ctypes class are new-style, so have an __mro__. This probably fails
|
||||
# for ctypes classes with multiple inheritance.
|
||||
if IS_PYPY:
|
||||
# (..., _ctypes.basics._CData, Bufferable, object)
|
||||
ctype_base = cls.__mro__[-3]
|
||||
else:
|
||||
# # (..., _ctypes._CData, object)
|
||||
ctype_base = cls.__mro__[-2]
|
||||
# right now, they're part of the _ctypes module
|
||||
return '_ctypes' in ctype_base.__module__
|
||||
except Exception:
|
||||
return False
|
||||
|
|
@ -0,0 +1,30 @@
|
|||
from typing import Any, TypeVar, overload, Generic
|
||||
import ctypes as ct
|
||||
|
||||
from numpy import ndarray
|
||||
from numpy.ctypeslib import c_intp
|
||||
|
||||
_CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
|
||||
_CT = TypeVar("_CT", bound=ct._CData)
|
||||
_PT = TypeVar("_PT", bound=None | int)
|
||||
|
||||
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
|
||||
# for 0D arrays once we've got shape-support
|
||||
|
||||
class _ctypes(Generic[_PT]):
|
||||
@overload
|
||||
def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ...
|
||||
@overload
|
||||
def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ...
|
||||
@property
|
||||
def data(self) -> _PT: ...
|
||||
@property
|
||||
def shape(self) -> ct.Array[c_intp]: ...
|
||||
@property
|
||||
def strides(self) -> ct.Array[c_intp]: ...
|
||||
@property
|
||||
def _as_parameter_(self) -> ct.c_void_p: ...
|
||||
|
||||
def data_as(self, obj: type[_CastT]) -> _CastT: ...
|
||||
def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
|
||||
def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
|
||||
356
AppDir/usr/lib/python3.12/site-packages/numpy/core/_machar.py
Normal file
356
AppDir/usr/lib/python3.12/site-packages/numpy/core/_machar.py
Normal file
|
|
@ -0,0 +1,356 @@
|
|||
"""
|
||||
Machine arithmetic - determine the parameters of the
|
||||
floating-point arithmetic system
|
||||
|
||||
Author: Pearu Peterson, September 2003
|
||||
|
||||
"""
|
||||
__all__ = ['MachAr']
|
||||
|
||||
from .fromnumeric import any
|
||||
from ._ufunc_config import errstate
|
||||
from .._utils import set_module
|
||||
|
||||
# Need to speed this up...especially for longfloat
|
||||
|
||||
# Deprecated 2021-10-20, NumPy 1.22
|
||||
class MachAr:
|
||||
"""
|
||||
Diagnosing machine parameters.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
ibeta : int
|
||||
Radix in which numbers are represented.
|
||||
it : int
|
||||
Number of base-`ibeta` digits in the floating point mantissa M.
|
||||
machep : int
|
||||
Exponent of the smallest (most negative) power of `ibeta` that,
|
||||
added to 1.0, gives something different from 1.0
|
||||
eps : float
|
||||
Floating-point number ``beta**machep`` (floating point precision)
|
||||
negep : int
|
||||
Exponent of the smallest power of `ibeta` that, subtracted
|
||||
from 1.0, gives something different from 1.0.
|
||||
epsneg : float
|
||||
Floating-point number ``beta**negep``.
|
||||
iexp : int
|
||||
Number of bits in the exponent (including its sign and bias).
|
||||
minexp : int
|
||||
Smallest (most negative) power of `ibeta` consistent with there
|
||||
being no leading zeros in the mantissa.
|
||||
xmin : float
|
||||
Floating-point number ``beta**minexp`` (the smallest [in
|
||||
magnitude] positive floating point number with full precision).
|
||||
maxexp : int
|
||||
Smallest (positive) power of `ibeta` that causes overflow.
|
||||
xmax : float
|
||||
``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
|
||||
usable floating value).
|
||||
irnd : int
|
||||
In ``range(6)``, information on what kind of rounding is done
|
||||
in addition, and on how underflow is handled.
|
||||
ngrd : int
|
||||
Number of 'guard digits' used when truncating the product
|
||||
of two mantissas to fit the representation.
|
||||
epsilon : float
|
||||
Same as `eps`.
|
||||
tiny : float
|
||||
An alias for `smallest_normal`, kept for backwards compatibility.
|
||||
huge : float
|
||||
Same as `xmax`.
|
||||
precision : float
|
||||
``- int(-log10(eps))``
|
||||
resolution : float
|
||||
``- 10**(-precision)``
|
||||
smallest_normal : float
|
||||
The smallest positive floating point number with 1 as leading bit in
|
||||
the mantissa following IEEE-754. Same as `xmin`.
|
||||
smallest_subnormal : float
|
||||
The smallest positive floating point number with 0 as leading bit in
|
||||
the mantissa following IEEE-754.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
float_conv : function, optional
|
||||
Function that converts an integer or integer array to a float
|
||||
or float array. Default is `float`.
|
||||
int_conv : function, optional
|
||||
Function that converts a float or float array to an integer or
|
||||
integer array. Default is `int`.
|
||||
float_to_float : function, optional
|
||||
Function that converts a float array to float. Default is `float`.
|
||||
Note that this does not seem to do anything useful in the current
|
||||
implementation.
|
||||
float_to_str : function, optional
|
||||
Function that converts a single float to a string. Default is
|
||||
``lambda v:'%24.16e' %v``.
|
||||
title : str, optional
|
||||
Title that is printed in the string representation of `MachAr`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
finfo : Machine limits for floating point types.
|
||||
iinfo : Machine limits for integer types.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Press, Teukolsky, Vetterling and Flannery,
|
||||
"Numerical Recipes in C++," 2nd ed,
|
||||
Cambridge University Press, 2002, p. 31.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, float_conv=float,int_conv=int,
|
||||
float_to_float=float,
|
||||
float_to_str=lambda v:'%24.16e' % v,
|
||||
title='Python floating point number'):
|
||||
"""
|
||||
|
||||
float_conv - convert integer to float (array)
|
||||
int_conv - convert float (array) to integer
|
||||
float_to_float - convert float array to float
|
||||
float_to_str - convert array float to str
|
||||
title - description of used floating point numbers
|
||||
|
||||
"""
|
||||
# We ignore all errors here because we are purposely triggering
|
||||
# underflow to detect the properties of the runninng arch.
|
||||
with errstate(under='ignore'):
|
||||
self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
|
||||
|
||||
def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
|
||||
max_iterN = 10000
|
||||
msg = "Did not converge after %d tries with %s"
|
||||
one = float_conv(1)
|
||||
two = one + one
|
||||
zero = one - one
|
||||
|
||||
# Do we really need to do this? Aren't they 2 and 2.0?
|
||||
# Determine ibeta and beta
|
||||
a = one
|
||||
for _ in range(max_iterN):
|
||||
a = a + a
|
||||
temp = a + one
|
||||
temp1 = temp - a
|
||||
if any(temp1 - one != zero):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
b = one
|
||||
for _ in range(max_iterN):
|
||||
b = b + b
|
||||
temp = a + b
|
||||
itemp = int_conv(temp-a)
|
||||
if any(itemp != 0):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
ibeta = itemp
|
||||
beta = float_conv(ibeta)
|
||||
|
||||
# Determine it and irnd
|
||||
it = -1
|
||||
b = one
|
||||
for _ in range(max_iterN):
|
||||
it = it + 1
|
||||
b = b * beta
|
||||
temp = b + one
|
||||
temp1 = temp - b
|
||||
if any(temp1 - one != zero):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
|
||||
betah = beta / two
|
||||
a = one
|
||||
for _ in range(max_iterN):
|
||||
a = a + a
|
||||
temp = a + one
|
||||
temp1 = temp - a
|
||||
if any(temp1 - one != zero):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
temp = a + betah
|
||||
irnd = 0
|
||||
if any(temp-a != zero):
|
||||
irnd = 1
|
||||
tempa = a + beta
|
||||
temp = tempa + betah
|
||||
if irnd == 0 and any(temp-tempa != zero):
|
||||
irnd = 2
|
||||
|
||||
# Determine negep and epsneg
|
||||
negep = it + 3
|
||||
betain = one / beta
|
||||
a = one
|
||||
for i in range(negep):
|
||||
a = a * betain
|
||||
b = a
|
||||
for _ in range(max_iterN):
|
||||
temp = one - a
|
||||
if any(temp-one != zero):
|
||||
break
|
||||
a = a * beta
|
||||
negep = negep - 1
|
||||
# Prevent infinite loop on PPC with gcc 4.0:
|
||||
if negep < 0:
|
||||
raise RuntimeError("could not determine machine tolerance "
|
||||
"for 'negep', locals() -> %s" % (locals()))
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
negep = -negep
|
||||
epsneg = a
|
||||
|
||||
# Determine machep and eps
|
||||
machep = - it - 3
|
||||
a = b
|
||||
|
||||
for _ in range(max_iterN):
|
||||
temp = one + a
|
||||
if any(temp-one != zero):
|
||||
break
|
||||
a = a * beta
|
||||
machep = machep + 1
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
eps = a
|
||||
|
||||
# Determine ngrd
|
||||
ngrd = 0
|
||||
temp = one + eps
|
||||
if irnd == 0 and any(temp*one - one != zero):
|
||||
ngrd = 1
|
||||
|
||||
# Determine iexp
|
||||
i = 0
|
||||
k = 1
|
||||
z = betain
|
||||
t = one + eps
|
||||
nxres = 0
|
||||
for _ in range(max_iterN):
|
||||
y = z
|
||||
z = y*y
|
||||
a = z*one # Check here for underflow
|
||||
temp = z*t
|
||||
if any(a+a == zero) or any(abs(z) >= y):
|
||||
break
|
||||
temp1 = temp * betain
|
||||
if any(temp1*beta == z):
|
||||
break
|
||||
i = i + 1
|
||||
k = k + k
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
if ibeta != 10:
|
||||
iexp = i + 1
|
||||
mx = k + k
|
||||
else:
|
||||
iexp = 2
|
||||
iz = ibeta
|
||||
while k >= iz:
|
||||
iz = iz * ibeta
|
||||
iexp = iexp + 1
|
||||
mx = iz + iz - 1
|
||||
|
||||
# Determine minexp and xmin
|
||||
for _ in range(max_iterN):
|
||||
xmin = y
|
||||
y = y * betain
|
||||
a = y * one
|
||||
temp = y * t
|
||||
if any((a + a) != zero) and any(abs(y) < xmin):
|
||||
k = k + 1
|
||||
temp1 = temp * betain
|
||||
if any(temp1*beta == y) and any(temp != y):
|
||||
nxres = 3
|
||||
xmin = y
|
||||
break
|
||||
else:
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
minexp = -k
|
||||
|
||||
# Determine maxexp, xmax
|
||||
if mx <= k + k - 3 and ibeta != 10:
|
||||
mx = mx + mx
|
||||
iexp = iexp + 1
|
||||
maxexp = mx + minexp
|
||||
irnd = irnd + nxres
|
||||
if irnd >= 2:
|
||||
maxexp = maxexp - 2
|
||||
i = maxexp + minexp
|
||||
if ibeta == 2 and not i:
|
||||
maxexp = maxexp - 1
|
||||
if i > 20:
|
||||
maxexp = maxexp - 1
|
||||
if any(a != y):
|
||||
maxexp = maxexp - 2
|
||||
xmax = one - epsneg
|
||||
if any(xmax*one != xmax):
|
||||
xmax = one - beta*epsneg
|
||||
xmax = xmax / (xmin*beta*beta*beta)
|
||||
i = maxexp + minexp + 3
|
||||
for j in range(i):
|
||||
if ibeta == 2:
|
||||
xmax = xmax + xmax
|
||||
else:
|
||||
xmax = xmax * beta
|
||||
|
||||
smallest_subnormal = abs(xmin / beta ** (it))
|
||||
|
||||
self.ibeta = ibeta
|
||||
self.it = it
|
||||
self.negep = negep
|
||||
self.epsneg = float_to_float(epsneg)
|
||||
self._str_epsneg = float_to_str(epsneg)
|
||||
self.machep = machep
|
||||
self.eps = float_to_float(eps)
|
||||
self._str_eps = float_to_str(eps)
|
||||
self.ngrd = ngrd
|
||||
self.iexp = iexp
|
||||
self.minexp = minexp
|
||||
self.xmin = float_to_float(xmin)
|
||||
self._str_xmin = float_to_str(xmin)
|
||||
self.maxexp = maxexp
|
||||
self.xmax = float_to_float(xmax)
|
||||
self._str_xmax = float_to_str(xmax)
|
||||
self.irnd = irnd
|
||||
|
||||
self.title = title
|
||||
# Commonly used parameters
|
||||
self.epsilon = self.eps
|
||||
self.tiny = self.xmin
|
||||
self.huge = self.xmax
|
||||
self.smallest_normal = self.xmin
|
||||
self._str_smallest_normal = float_to_str(self.xmin)
|
||||
self.smallest_subnormal = float_to_float(smallest_subnormal)
|
||||
self._str_smallest_subnormal = float_to_str(smallest_subnormal)
|
||||
|
||||
import math
|
||||
self.precision = int(-math.log10(float_to_float(self.eps)))
|
||||
ten = two + two + two + two + two
|
||||
resolution = ten ** (-self.precision)
|
||||
self.resolution = float_to_float(resolution)
|
||||
self._str_resolution = float_to_str(resolution)
|
||||
|
||||
def __str__(self):
|
||||
fmt = (
|
||||
'Machine parameters for %(title)s\n'
|
||||
'---------------------------------------------------------------------\n'
|
||||
'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
|
||||
'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
|
||||
'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
|
||||
'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
|
||||
'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
|
||||
'smallest_normal=%(smallest_normal)s '
|
||||
'smallest_subnormal=%(smallest_subnormal)s\n'
|
||||
'---------------------------------------------------------------------\n'
|
||||
)
|
||||
return fmt % self.__dict__
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(MachAr())
|
||||
234
AppDir/usr/lib/python3.12/site-packages/numpy/core/_methods.py
Normal file
234
AppDir/usr/lib/python3.12/site-packages/numpy/core/_methods.py
Normal file
|
|
@ -0,0 +1,234 @@
|
|||
"""
|
||||
Array methods which are called by both the C-code for the method
|
||||
and the Python code for the NumPy-namespace function
|
||||
|
||||
"""
|
||||
import warnings
|
||||
from contextlib import nullcontext
|
||||
|
||||
from numpy.core import multiarray as mu
|
||||
from numpy.core import umath as um
|
||||
from numpy.core.multiarray import asanyarray
|
||||
from numpy.core import numerictypes as nt
|
||||
from numpy.core import _exceptions
|
||||
from numpy.core._ufunc_config import _no_nep50_warning
|
||||
from numpy._globals import _NoValue
|
||||
from numpy.compat import pickle, os_fspath
|
||||
|
||||
# save those O(100) nanoseconds!
|
||||
umr_maximum = um.maximum.reduce
|
||||
umr_minimum = um.minimum.reduce
|
||||
umr_sum = um.add.reduce
|
||||
umr_prod = um.multiply.reduce
|
||||
umr_any = um.logical_or.reduce
|
||||
umr_all = um.logical_and.reduce
|
||||
|
||||
# Complex types to -> (2,)float view for fast-path computation in _var()
|
||||
_complex_to_float = {
|
||||
nt.dtype(nt.csingle) : nt.dtype(nt.single),
|
||||
nt.dtype(nt.cdouble) : nt.dtype(nt.double),
|
||||
}
|
||||
# Special case for windows: ensure double takes precedence
|
||||
if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
|
||||
_complex_to_float.update({
|
||||
nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
|
||||
})
|
||||
|
||||
# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
|
||||
# small reductions
|
||||
def _amax(a, axis=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_maximum(a, axis, None, out, keepdims, initial, where)
|
||||
|
||||
def _amin(a, axis=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_minimum(a, axis, None, out, keepdims, initial, where)
|
||||
|
||||
def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_sum(a, axis, dtype, out, keepdims, initial, where)
|
||||
|
||||
def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_prod(a, axis, dtype, out, keepdims, initial, where)
|
||||
|
||||
def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||
if where is True:
|
||||
return umr_any(a, axis, dtype, out, keepdims)
|
||||
return umr_any(a, axis, dtype, out, keepdims, where=where)
|
||||
|
||||
def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||
if where is True:
|
||||
return umr_all(a, axis, dtype, out, keepdims)
|
||||
return umr_all(a, axis, dtype, out, keepdims, where=where)
|
||||
|
||||
def _count_reduce_items(arr, axis, keepdims=False, where=True):
|
||||
# fast-path for the default case
|
||||
if where is True:
|
||||
# no boolean mask given, calculate items according to axis
|
||||
if axis is None:
|
||||
axis = tuple(range(arr.ndim))
|
||||
elif not isinstance(axis, tuple):
|
||||
axis = (axis,)
|
||||
items = 1
|
||||
for ax in axis:
|
||||
items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
|
||||
items = nt.intp(items)
|
||||
else:
|
||||
# TODO: Optimize case when `where` is broadcast along a non-reduction
|
||||
# axis and full sum is more excessive than needed.
|
||||
|
||||
# guarded to protect circular imports
|
||||
from numpy.lib.stride_tricks import broadcast_to
|
||||
# count True values in (potentially broadcasted) boolean mask
|
||||
items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
|
||||
keepdims)
|
||||
return items
|
||||
|
||||
def _clip(a, min=None, max=None, out=None, **kwargs):
|
||||
if min is None and max is None:
|
||||
raise ValueError("One of max or min must be given")
|
||||
|
||||
if min is None:
|
||||
return um.minimum(a, max, out=out, **kwargs)
|
||||
elif max is None:
|
||||
return um.maximum(a, min, out=out, **kwargs)
|
||||
else:
|
||||
return um.clip(a, min, max, out=out, **kwargs)
|
||||
|
||||
def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
arr = asanyarray(a)
|
||||
|
||||
is_float16_result = False
|
||||
|
||||
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||
if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
|
||||
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
|
||||
|
||||
# Cast bool, unsigned int, and int to float64 by default
|
||||
if dtype is None:
|
||||
if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
|
||||
dtype = mu.dtype('f8')
|
||||
elif issubclass(arr.dtype.type, nt.float16):
|
||||
dtype = mu.dtype('f4')
|
||||
is_float16_result = True
|
||||
|
||||
ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
|
||||
if isinstance(ret, mu.ndarray):
|
||||
with _no_nep50_warning():
|
||||
ret = um.true_divide(
|
||||
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||
if is_float16_result and out is None:
|
||||
ret = arr.dtype.type(ret)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
if is_float16_result:
|
||||
ret = arr.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret / rcount
|
||||
|
||||
return ret
|
||||
|
||||
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||
where=True):
|
||||
arr = asanyarray(a)
|
||||
|
||||
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||
# Make this warning show up on top.
|
||||
if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
|
||||
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
|
||||
stacklevel=2)
|
||||
|
||||
# Cast bool, unsigned int, and int to float64 by default
|
||||
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
|
||||
dtype = mu.dtype('f8')
|
||||
|
||||
# Compute the mean.
|
||||
# Note that if dtype is not of inexact type then arraymean will
|
||||
# not be either.
|
||||
arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
|
||||
# The shape of rcount has to match arrmean to not change the shape of out
|
||||
# in broadcasting. Otherwise, it cannot be stored back to arrmean.
|
||||
if rcount.ndim == 0:
|
||||
# fast-path for default case when where is True
|
||||
div = rcount
|
||||
else:
|
||||
# matching rcount to arrmean when where is specified as array
|
||||
div = rcount.reshape(arrmean.shape)
|
||||
if isinstance(arrmean, mu.ndarray):
|
||||
with _no_nep50_warning():
|
||||
arrmean = um.true_divide(arrmean, div, out=arrmean,
|
||||
casting='unsafe', subok=False)
|
||||
elif hasattr(arrmean, "dtype"):
|
||||
arrmean = arrmean.dtype.type(arrmean / rcount)
|
||||
else:
|
||||
arrmean = arrmean / rcount
|
||||
|
||||
# Compute sum of squared deviations from mean
|
||||
# Note that x may not be inexact and that we need it to be an array,
|
||||
# not a scalar.
|
||||
x = asanyarray(arr - arrmean)
|
||||
|
||||
if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
|
||||
x = um.multiply(x, x, out=x)
|
||||
# Fast-paths for built-in complex types
|
||||
elif x.dtype in _complex_to_float:
|
||||
xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
|
||||
um.multiply(xv, xv, out=xv)
|
||||
x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
|
||||
# Most general case; includes handling object arrays containing imaginary
|
||||
# numbers and complex types with non-native byteorder
|
||||
else:
|
||||
x = um.multiply(x, um.conjugate(x), out=x).real
|
||||
|
||||
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
|
||||
|
||||
# Compute degrees of freedom and make sure it is not negative.
|
||||
rcount = um.maximum(rcount - ddof, 0)
|
||||
|
||||
# divide by degrees of freedom
|
||||
if isinstance(ret, mu.ndarray):
|
||||
with _no_nep50_warning():
|
||||
ret = um.true_divide(
|
||||
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
ret = ret.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret / rcount
|
||||
|
||||
return ret
|
||||
|
||||
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||
where=True):
|
||||
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
|
||||
keepdims=keepdims, where=where)
|
||||
|
||||
if isinstance(ret, mu.ndarray):
|
||||
ret = um.sqrt(ret, out=ret)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
ret = ret.dtype.type(um.sqrt(ret))
|
||||
else:
|
||||
ret = um.sqrt(ret)
|
||||
|
||||
return ret
|
||||
|
||||
def _ptp(a, axis=None, out=None, keepdims=False):
|
||||
return um.subtract(
|
||||
umr_maximum(a, axis, None, out, keepdims),
|
||||
umr_minimum(a, axis, None, None, keepdims),
|
||||
out
|
||||
)
|
||||
|
||||
def _dump(self, file, protocol=2):
|
||||
if hasattr(file, 'write'):
|
||||
ctx = nullcontext(file)
|
||||
else:
|
||||
ctx = open(os_fspath(file), "wb")
|
||||
with ctx as f:
|
||||
pickle.dump(self, f, protocol=protocol)
|
||||
|
||||
def _dumps(self, protocol=2):
|
||||
return pickle.dumps(self, protocol=protocol)
|
||||
|
|
@ -0,0 +1,100 @@
|
|||
"""
|
||||
String-handling utilities to avoid locale-dependence.
|
||||
|
||||
Used primarily to generate type name aliases.
|
||||
"""
|
||||
# "import string" is costly to import!
|
||||
# Construct the translation tables directly
|
||||
# "A" = chr(65), "a" = chr(97)
|
||||
_all_chars = tuple(map(chr, range(256)))
|
||||
_ascii_upper = _all_chars[65:65+26]
|
||||
_ascii_lower = _all_chars[97:97+26]
|
||||
LOWER_TABLE = "".join(_all_chars[:65] + _ascii_lower + _all_chars[65+26:])
|
||||
UPPER_TABLE = "".join(_all_chars[:97] + _ascii_upper + _all_chars[97+26:])
|
||||
|
||||
|
||||
def english_lower(s):
|
||||
""" Apply English case rules to convert ASCII strings to all lower case.
|
||||
|
||||
This is an internal utility function to replace calls to str.lower() such
|
||||
that we can avoid changing behavior with changing locales. In particular,
|
||||
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||
both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
lowered : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy.core.numerictypes import english_lower
|
||||
>>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||
'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
|
||||
>>> english_lower('')
|
||||
''
|
||||
"""
|
||||
lowered = s.translate(LOWER_TABLE)
|
||||
return lowered
|
||||
|
||||
|
||||
def english_upper(s):
|
||||
""" Apply English case rules to convert ASCII strings to all upper case.
|
||||
|
||||
This is an internal utility function to replace calls to str.upper() such
|
||||
that we can avoid changing behavior with changing locales. In particular,
|
||||
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||
both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
uppered : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy.core.numerictypes import english_upper
|
||||
>>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
|
||||
>>> english_upper('')
|
||||
''
|
||||
"""
|
||||
uppered = s.translate(UPPER_TABLE)
|
||||
return uppered
|
||||
|
||||
|
||||
def english_capitalize(s):
|
||||
""" Apply English case rules to convert the first character of an ASCII
|
||||
string to upper case.
|
||||
|
||||
This is an internal utility function to replace calls to str.capitalize()
|
||||
such that we can avoid changing behavior with changing locales.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
capitalized : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy.core.numerictypes import english_capitalize
|
||||
>>> english_capitalize('int8')
|
||||
'Int8'
|
||||
>>> english_capitalize('Int8')
|
||||
'Int8'
|
||||
>>> english_capitalize('')
|
||||
''
|
||||
"""
|
||||
if s:
|
||||
return english_upper(s[0]) + s[1:]
|
||||
else:
|
||||
return s
|
||||
|
|
@ -0,0 +1,245 @@
|
|||
"""
|
||||
Due to compatibility, numpy has a very large number of different naming
|
||||
conventions for the scalar types (those subclassing from `numpy.generic`).
|
||||
This file produces a convoluted set of dictionaries mapping names to types,
|
||||
and sometimes other mappings too.
|
||||
|
||||
.. data:: allTypes
|
||||
A dictionary of names to types that will be exposed as attributes through
|
||||
``np.core.numerictypes.*``
|
||||
|
||||
.. data:: sctypeDict
|
||||
Similar to `allTypes`, but maps a broader set of aliases to their types.
|
||||
|
||||
.. data:: sctypes
|
||||
A dictionary keyed by a "type group" string, providing a list of types
|
||||
under that group.
|
||||
|
||||
"""
|
||||
|
||||
from numpy.compat import unicode
|
||||
from numpy.core._string_helpers import english_lower
|
||||
from numpy.core.multiarray import typeinfo, dtype
|
||||
from numpy.core._dtype import _kind_name
|
||||
|
||||
|
||||
sctypeDict = {} # Contains all leaf-node scalar types with aliases
|
||||
allTypes = {} # Collect the types we will add to the module
|
||||
|
||||
|
||||
# separate the actual type info from the abstract base classes
|
||||
_abstract_types = {}
|
||||
_concrete_typeinfo = {}
|
||||
for k, v in typeinfo.items():
|
||||
# make all the keys lowercase too
|
||||
k = english_lower(k)
|
||||
if isinstance(v, type):
|
||||
_abstract_types[k] = v
|
||||
else:
|
||||
_concrete_typeinfo[k] = v
|
||||
|
||||
_concrete_types = {v.type for k, v in _concrete_typeinfo.items()}
|
||||
|
||||
|
||||
def _bits_of(obj):
|
||||
try:
|
||||
info = next(v for v in _concrete_typeinfo.values() if v.type is obj)
|
||||
except StopIteration:
|
||||
if obj in _abstract_types.values():
|
||||
msg = "Cannot count the bits of an abstract type"
|
||||
raise ValueError(msg) from None
|
||||
|
||||
# some third-party type - make a best-guess
|
||||
return dtype(obj).itemsize * 8
|
||||
else:
|
||||
return info.bits
|
||||
|
||||
|
||||
def bitname(obj):
|
||||
"""Return a bit-width name for a given type object"""
|
||||
bits = _bits_of(obj)
|
||||
dt = dtype(obj)
|
||||
char = dt.kind
|
||||
base = _kind_name(dt)
|
||||
|
||||
if base == 'object':
|
||||
bits = 0
|
||||
|
||||
if bits != 0:
|
||||
char = "%s%d" % (char, bits // 8)
|
||||
|
||||
return base, bits, char
|
||||
|
||||
|
||||
def _add_types():
|
||||
for name, info in _concrete_typeinfo.items():
|
||||
# define C-name and insert typenum and typechar references also
|
||||
allTypes[name] = info.type
|
||||
sctypeDict[name] = info.type
|
||||
sctypeDict[info.char] = info.type
|
||||
sctypeDict[info.num] = info.type
|
||||
|
||||
for name, cls in _abstract_types.items():
|
||||
allTypes[name] = cls
|
||||
_add_types()
|
||||
|
||||
# This is the priority order used to assign the bit-sized NPY_INTxx names, which
|
||||
# must match the order in npy_common.h in order for NPY_INTxx and np.intxx to be
|
||||
# consistent.
|
||||
# If two C types have the same size, then the earliest one in this list is used
|
||||
# as the sized name.
|
||||
_int_ctypes = ['long', 'longlong', 'int', 'short', 'byte']
|
||||
_uint_ctypes = list('u' + t for t in _int_ctypes)
|
||||
|
||||
def _add_aliases():
|
||||
for name, info in _concrete_typeinfo.items():
|
||||
# these are handled by _add_integer_aliases
|
||||
if name in _int_ctypes or name in _uint_ctypes:
|
||||
continue
|
||||
|
||||
# insert bit-width version for this class (if relevant)
|
||||
base, bit, char = bitname(info.type)
|
||||
|
||||
myname = "%s%d" % (base, bit)
|
||||
|
||||
# ensure that (c)longdouble does not overwrite the aliases assigned to
|
||||
# (c)double
|
||||
if name in ('longdouble', 'clongdouble') and myname in allTypes:
|
||||
continue
|
||||
|
||||
# Add to the main namespace if desired:
|
||||
if bit != 0 and base != "bool":
|
||||
allTypes[myname] = info.type
|
||||
|
||||
# add forward, reverse, and string mapping to numarray
|
||||
sctypeDict[char] = info.type
|
||||
|
||||
# add mapping for both the bit name
|
||||
sctypeDict[myname] = info.type
|
||||
|
||||
|
||||
_add_aliases()
|
||||
|
||||
def _add_integer_aliases():
|
||||
seen_bits = set()
|
||||
for i_ctype, u_ctype in zip(_int_ctypes, _uint_ctypes):
|
||||
i_info = _concrete_typeinfo[i_ctype]
|
||||
u_info = _concrete_typeinfo[u_ctype]
|
||||
bits = i_info.bits # same for both
|
||||
|
||||
for info, charname, intname in [
|
||||
(i_info,'i%d' % (bits//8,), 'int%d' % bits),
|
||||
(u_info,'u%d' % (bits//8,), 'uint%d' % bits)]:
|
||||
if bits not in seen_bits:
|
||||
# sometimes two different types have the same number of bits
|
||||
# if so, the one iterated over first takes precedence
|
||||
allTypes[intname] = info.type
|
||||
sctypeDict[intname] = info.type
|
||||
sctypeDict[charname] = info.type
|
||||
|
||||
seen_bits.add(bits)
|
||||
|
||||
_add_integer_aliases()
|
||||
|
||||
# We use these later
|
||||
void = allTypes['void']
|
||||
|
||||
#
|
||||
# Rework the Python names (so that float and complex and int are consistent
|
||||
# with Python usage)
|
||||
#
|
||||
def _set_up_aliases():
|
||||
type_pairs = [('complex_', 'cdouble'),
|
||||
('single', 'float'),
|
||||
('csingle', 'cfloat'),
|
||||
('singlecomplex', 'cfloat'),
|
||||
('float_', 'double'),
|
||||
('intc', 'int'),
|
||||
('uintc', 'uint'),
|
||||
('int_', 'long'),
|
||||
('uint', 'ulong'),
|
||||
('cfloat', 'cdouble'),
|
||||
('longfloat', 'longdouble'),
|
||||
('clongfloat', 'clongdouble'),
|
||||
('longcomplex', 'clongdouble'),
|
||||
('bool_', 'bool'),
|
||||
('bytes_', 'string'),
|
||||
('string_', 'string'),
|
||||
('str_', 'unicode'),
|
||||
('unicode_', 'unicode'),
|
||||
('object_', 'object')]
|
||||
for alias, t in type_pairs:
|
||||
allTypes[alias] = allTypes[t]
|
||||
sctypeDict[alias] = sctypeDict[t]
|
||||
# Remove aliases overriding python types and modules
|
||||
to_remove = ['object', 'int', 'float',
|
||||
'complex', 'bool', 'string', 'datetime', 'timedelta',
|
||||
'bytes', 'str']
|
||||
|
||||
for t in to_remove:
|
||||
try:
|
||||
del allTypes[t]
|
||||
del sctypeDict[t]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
# Additional aliases in sctypeDict that should not be exposed as attributes
|
||||
attrs_to_remove = ['ulong']
|
||||
|
||||
for t in attrs_to_remove:
|
||||
try:
|
||||
del allTypes[t]
|
||||
except KeyError:
|
||||
pass
|
||||
_set_up_aliases()
|
||||
|
||||
|
||||
sctypes = {'int': [],
|
||||
'uint':[],
|
||||
'float':[],
|
||||
'complex':[],
|
||||
'others':[bool, object, bytes, unicode, void]}
|
||||
|
||||
def _add_array_type(typename, bits):
|
||||
try:
|
||||
t = allTypes['%s%d' % (typename, bits)]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
sctypes[typename].append(t)
|
||||
|
||||
def _set_array_types():
|
||||
ibytes = [1, 2, 4, 8, 16, 32, 64]
|
||||
fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
|
||||
for bytes in ibytes:
|
||||
bits = 8*bytes
|
||||
_add_array_type('int', bits)
|
||||
_add_array_type('uint', bits)
|
||||
for bytes in fbytes:
|
||||
bits = 8*bytes
|
||||
_add_array_type('float', bits)
|
||||
_add_array_type('complex', 2*bits)
|
||||
_gi = dtype('p')
|
||||
if _gi.type not in sctypes['int']:
|
||||
indx = 0
|
||||
sz = _gi.itemsize
|
||||
_lst = sctypes['int']
|
||||
while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
|
||||
indx += 1
|
||||
sctypes['int'].insert(indx, _gi.type)
|
||||
sctypes['uint'].insert(indx, dtype('P').type)
|
||||
_set_array_types()
|
||||
|
||||
|
||||
# Add additional strings to the sctypeDict
|
||||
_toadd = ['int', 'float', 'complex', 'bool', 'object',
|
||||
'str', 'bytes', ('a', 'bytes_'),
|
||||
('int0', 'intp'), ('uint0', 'uintp')]
|
||||
|
||||
for name in _toadd:
|
||||
if isinstance(name, tuple):
|
||||
sctypeDict[name[0]] = allTypes[name[1]]
|
||||
else:
|
||||
sctypeDict[name] = allTypes['%s_' % name]
|
||||
|
||||
del _toadd, name
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
from typing import Any, TypedDict
|
||||
|
||||
from numpy import generic, signedinteger, unsignedinteger, floating, complexfloating
|
||||
|
||||
class _SCTypes(TypedDict):
|
||||
int: list[type[signedinteger[Any]]]
|
||||
uint: list[type[unsignedinteger[Any]]]
|
||||
float: list[type[floating[Any]]]
|
||||
complex: list[type[complexfloating[Any, Any]]]
|
||||
others: list[type]
|
||||
|
||||
sctypeDict: dict[int | str, type[generic]]
|
||||
sctypes: _SCTypes
|
||||
|
|
@ -0,0 +1,466 @@
|
|||
"""
|
||||
Functions for changing global ufunc configuration
|
||||
|
||||
This provides helpers which wrap `umath.geterrobj` and `umath.seterrobj`
|
||||
"""
|
||||
import collections.abc
|
||||
import contextlib
|
||||
import contextvars
|
||||
|
||||
from .._utils import set_module
|
||||
from .umath import (
|
||||
UFUNC_BUFSIZE_DEFAULT,
|
||||
ERR_IGNORE, ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, ERR_LOG, ERR_DEFAULT,
|
||||
SHIFT_DIVIDEBYZERO, SHIFT_OVERFLOW, SHIFT_UNDERFLOW, SHIFT_INVALID,
|
||||
)
|
||||
from . import umath
|
||||
|
||||
__all__ = [
|
||||
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
|
||||
"errstate", '_no_nep50_warning'
|
||||
]
|
||||
|
||||
_errdict = {"ignore": ERR_IGNORE,
|
||||
"warn": ERR_WARN,
|
||||
"raise": ERR_RAISE,
|
||||
"call": ERR_CALL,
|
||||
"print": ERR_PRINT,
|
||||
"log": ERR_LOG}
|
||||
|
||||
_errdict_rev = {value: key for key, value in _errdict.items()}
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
|
||||
"""
|
||||
Set how floating-point errors are handled.
|
||||
|
||||
Note that operations on integer scalar types (such as `int16`) are
|
||||
handled like floating point, and are affected by these settings.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Set treatment for all types of floating-point errors at once:
|
||||
|
||||
- ignore: Take no action when the exception occurs.
|
||||
- warn: Print a `RuntimeWarning` (via the Python `warnings` module).
|
||||
- raise: Raise a `FloatingPointError`.
|
||||
- call: Call a function specified using the `seterrcall` function.
|
||||
- print: Print a warning directly to ``stdout``.
|
||||
- log: Record error in a Log object specified by `seterrcall`.
|
||||
|
||||
The default is not to change the current behavior.
|
||||
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for division by zero.
|
||||
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for floating-point overflow.
|
||||
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for floating-point underflow.
|
||||
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for invalid floating-point operation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
old_settings : dict
|
||||
Dictionary containing the old settings.
|
||||
|
||||
See also
|
||||
--------
|
||||
seterrcall : Set a callback function for the 'call' mode.
|
||||
geterr, geterrcall, errstate
|
||||
|
||||
Notes
|
||||
-----
|
||||
The floating-point exceptions are defined in the IEEE 754 standard [1]_:
|
||||
|
||||
- Division by zero: infinite result obtained from finite numbers.
|
||||
- Overflow: result too large to be expressed.
|
||||
- Underflow: result so close to zero that some precision
|
||||
was lost.
|
||||
- Invalid operation: result is not an expressible number, typically
|
||||
indicates that a NaN was produced.
|
||||
|
||||
.. [1] https://en.wikipedia.org/wiki/IEEE_754
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> old_settings = np.seterr(all='ignore') #seterr to known value
|
||||
>>> np.seterr(over='raise')
|
||||
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
>>> np.seterr(**old_settings) # reset to default
|
||||
{'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
30464
|
||||
>>> old_settings = np.seterr(all='warn', over='raise')
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
FloatingPointError: overflow encountered in scalar multiply
|
||||
|
||||
>>> old_settings = np.seterr(all='print')
|
||||
>>> np.geterr()
|
||||
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
30464
|
||||
|
||||
"""
|
||||
|
||||
pyvals = umath.geterrobj()
|
||||
old = geterr()
|
||||
|
||||
if divide is None:
|
||||
divide = all or old['divide']
|
||||
if over is None:
|
||||
over = all or old['over']
|
||||
if under is None:
|
||||
under = all or old['under']
|
||||
if invalid is None:
|
||||
invalid = all or old['invalid']
|
||||
|
||||
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
|
||||
(_errdict[over] << SHIFT_OVERFLOW) +
|
||||
(_errdict[under] << SHIFT_UNDERFLOW) +
|
||||
(_errdict[invalid] << SHIFT_INVALID))
|
||||
|
||||
pyvals[1] = maskvalue
|
||||
umath.seterrobj(pyvals)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def geterr():
|
||||
"""
|
||||
Get the current way of handling floating-point errors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : dict
|
||||
A dictionary with keys "divide", "over", "under", and "invalid",
|
||||
whose values are from the strings "ignore", "print", "log", "warn",
|
||||
"raise", and "call". The keys represent possible floating-point
|
||||
exceptions, and the values define how these exceptions are handled.
|
||||
|
||||
See Also
|
||||
--------
|
||||
geterrcall, seterr, seterrcall
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.geterr()
|
||||
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
|
||||
>>> np.arange(3.) / np.arange(3.)
|
||||
array([nan, 1., 1.])
|
||||
|
||||
>>> oldsettings = np.seterr(all='warn', over='raise')
|
||||
>>> np.geterr()
|
||||
{'divide': 'warn', 'over': 'raise', 'under': 'warn', 'invalid': 'warn'}
|
||||
>>> np.arange(3.) / np.arange(3.)
|
||||
array([nan, 1., 1.])
|
||||
|
||||
"""
|
||||
maskvalue = umath.geterrobj()[1]
|
||||
mask = 7
|
||||
res = {}
|
||||
val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
|
||||
res['divide'] = _errdict_rev[val]
|
||||
val = (maskvalue >> SHIFT_OVERFLOW) & mask
|
||||
res['over'] = _errdict_rev[val]
|
||||
val = (maskvalue >> SHIFT_UNDERFLOW) & mask
|
||||
res['under'] = _errdict_rev[val]
|
||||
val = (maskvalue >> SHIFT_INVALID) & mask
|
||||
res['invalid'] = _errdict_rev[val]
|
||||
return res
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def setbufsize(size):
|
||||
"""
|
||||
Set the size of the buffer used in ufuncs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : int
|
||||
Size of buffer.
|
||||
|
||||
"""
|
||||
if size > 10e6:
|
||||
raise ValueError("Buffer size, %s, is too big." % size)
|
||||
if size < 5:
|
||||
raise ValueError("Buffer size, %s, is too small." % size)
|
||||
if size % 16 != 0:
|
||||
raise ValueError("Buffer size, %s, is not a multiple of 16." % size)
|
||||
|
||||
pyvals = umath.geterrobj()
|
||||
old = getbufsize()
|
||||
pyvals[0] = size
|
||||
umath.seterrobj(pyvals)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def getbufsize():
|
||||
"""
|
||||
Return the size of the buffer used in ufuncs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
getbufsize : int
|
||||
Size of ufunc buffer in bytes.
|
||||
|
||||
"""
|
||||
return umath.geterrobj()[0]
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def seterrcall(func):
|
||||
"""
|
||||
Set the floating-point error callback function or log object.
|
||||
|
||||
There are two ways to capture floating-point error messages. The first
|
||||
is to set the error-handler to 'call', using `seterr`. Then, set
|
||||
the function to call using this function.
|
||||
|
||||
The second is to set the error-handler to 'log', using `seterr`.
|
||||
Floating-point errors then trigger a call to the 'write' method of
|
||||
the provided object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable f(err, flag) or object with write method
|
||||
Function to call upon floating-point errors ('call'-mode) or
|
||||
object whose 'write' method is used to log such message ('log'-mode).
|
||||
|
||||
The call function takes two arguments. The first is a string describing
|
||||
the type of error (such as "divide by zero", "overflow", "underflow",
|
||||
or "invalid value"), and the second is the status flag. The flag is a
|
||||
byte, whose four least-significant bits indicate the type of error, one
|
||||
of "divide", "over", "under", "invalid"::
|
||||
|
||||
[0 0 0 0 divide over under invalid]
|
||||
|
||||
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
|
||||
|
||||
If an object is provided, its write method should take one argument,
|
||||
a string.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : callable, log instance or None
|
||||
The old error handler.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterr, geterr, geterrcall
|
||||
|
||||
Examples
|
||||
--------
|
||||
Callback upon error:
|
||||
|
||||
>>> def err_handler(type, flag):
|
||||
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||
...
|
||||
|
||||
>>> saved_handler = np.seterrcall(err_handler)
|
||||
>>> save_err = np.seterr(all='call')
|
||||
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
Floating point error (divide by zero), with flag 1
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> np.seterrcall(saved_handler)
|
||||
<function err_handler at 0x...>
|
||||
>>> np.seterr(**save_err)
|
||||
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
|
||||
|
||||
Log error message:
|
||||
|
||||
>>> class Log:
|
||||
... def write(self, msg):
|
||||
... print("LOG: %s" % msg)
|
||||
...
|
||||
|
||||
>>> log = Log()
|
||||
>>> saved_handler = np.seterrcall(log)
|
||||
>>> save_err = np.seterr(all='log')
|
||||
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
LOG: Warning: divide by zero encountered in divide
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> np.seterrcall(saved_handler)
|
||||
<numpy.core.numeric.Log object at 0x...>
|
||||
>>> np.seterr(**save_err)
|
||||
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
|
||||
|
||||
"""
|
||||
if func is not None and not isinstance(func, collections.abc.Callable):
|
||||
if (not hasattr(func, 'write') or
|
||||
not isinstance(func.write, collections.abc.Callable)):
|
||||
raise ValueError("Only callable can be used as callback")
|
||||
pyvals = umath.geterrobj()
|
||||
old = geterrcall()
|
||||
pyvals[2] = func
|
||||
umath.seterrobj(pyvals)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def geterrcall():
|
||||
"""
|
||||
Return the current callback function used on floating-point errors.
|
||||
|
||||
When the error handling for a floating-point error (one of "divide",
|
||||
"over", "under", or "invalid") is set to 'call' or 'log', the function
|
||||
that is called or the log instance that is written to is returned by
|
||||
`geterrcall`. This function or log instance has been set with
|
||||
`seterrcall`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
errobj : callable, log instance or None
|
||||
The current error handler. If no handler was set through `seterrcall`,
|
||||
``None`` is returned.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterrcall, seterr, geterr
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.geterrcall() # we did not yet set a handler, returns None
|
||||
|
||||
>>> oldsettings = np.seterr(all='call')
|
||||
>>> def err_handler(type, flag):
|
||||
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||
>>> oldhandler = np.seterrcall(err_handler)
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
Floating point error (divide by zero), with flag 1
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> cur_handler = np.geterrcall()
|
||||
>>> cur_handler is err_handler
|
||||
True
|
||||
|
||||
"""
|
||||
return umath.geterrobj()[2]
|
||||
|
||||
|
||||
class _unspecified:
|
||||
pass
|
||||
|
||||
|
||||
_Unspecified = _unspecified()
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
class errstate(contextlib.ContextDecorator):
|
||||
"""
|
||||
errstate(**kwargs)
|
||||
|
||||
Context manager for floating-point error handling.
|
||||
|
||||
Using an instance of `errstate` as a context manager allows statements in
|
||||
that context to execute with a known error handling behavior. Upon entering
|
||||
the context the error handling is set with `seterr` and `seterrcall`, and
|
||||
upon exiting it is reset to what it was before.
|
||||
|
||||
.. versionchanged:: 1.17.0
|
||||
`errstate` is also usable as a function decorator, saving
|
||||
a level of indentation if an entire function is wrapped.
|
||||
See :py:class:`contextlib.ContextDecorator` for more information.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kwargs : {divide, over, under, invalid}
|
||||
Keyword arguments. The valid keywords are the possible floating-point
|
||||
exceptions. Each keyword should have a string value that defines the
|
||||
treatment for the particular error. Possible values are
|
||||
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterr, geterr, seterrcall, geterrcall
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
|
||||
|
||||
>>> np.arange(3) / 0.
|
||||
array([nan, inf, inf])
|
||||
>>> with np.errstate(divide='warn'):
|
||||
... np.arange(3) / 0.
|
||||
array([nan, inf, inf])
|
||||
|
||||
>>> np.sqrt(-1)
|
||||
nan
|
||||
>>> with np.errstate(invalid='raise'):
|
||||
... np.sqrt(-1)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 2, in <module>
|
||||
FloatingPointError: invalid value encountered in sqrt
|
||||
|
||||
Outside the context the error handling behavior has not changed:
|
||||
|
||||
>>> np.geterr()
|
||||
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *, call=_Unspecified, **kwargs):
|
||||
self.call = call
|
||||
self.kwargs = kwargs
|
||||
|
||||
def __enter__(self):
|
||||
self.oldstate = seterr(**self.kwargs)
|
||||
if self.call is not _Unspecified:
|
||||
self.oldcall = seterrcall(self.call)
|
||||
|
||||
def __exit__(self, *exc_info):
|
||||
seterr(**self.oldstate)
|
||||
if self.call is not _Unspecified:
|
||||
seterrcall(self.oldcall)
|
||||
|
||||
|
||||
def _setdef():
|
||||
defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None]
|
||||
umath.seterrobj(defval)
|
||||
|
||||
|
||||
# set the default values
|
||||
_setdef()
|
||||
|
||||
|
||||
NO_NEP50_WARNING = contextvars.ContextVar("_no_nep50_warning", default=False)
|
||||
|
||||
@set_module('numpy')
|
||||
@contextlib.contextmanager
|
||||
def _no_nep50_warning():
|
||||
"""
|
||||
Context manager to disable NEP 50 warnings. This context manager is
|
||||
only relevant if the NEP 50 warnings are enabled globally (which is not
|
||||
thread/context safe).
|
||||
|
||||
This warning context manager itself is fully safe, however.
|
||||
"""
|
||||
token = NO_NEP50_WARNING.set(True)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
NO_NEP50_WARNING.reset(token)
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
from collections.abc import Callable
|
||||
from typing import Any, Literal, TypedDict
|
||||
|
||||
from numpy import _SupportsWrite
|
||||
|
||||
_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
|
||||
_ErrFunc = Callable[[str, int], Any]
|
||||
|
||||
class _ErrDict(TypedDict):
|
||||
divide: _ErrKind
|
||||
over: _ErrKind
|
||||
under: _ErrKind
|
||||
invalid: _ErrKind
|
||||
|
||||
class _ErrDictOptional(TypedDict, total=False):
|
||||
all: None | _ErrKind
|
||||
divide: None | _ErrKind
|
||||
over: None | _ErrKind
|
||||
under: None | _ErrKind
|
||||
invalid: None | _ErrKind
|
||||
|
||||
def seterr(
|
||||
all: None | _ErrKind = ...,
|
||||
divide: None | _ErrKind = ...,
|
||||
over: None | _ErrKind = ...,
|
||||
under: None | _ErrKind = ...,
|
||||
invalid: None | _ErrKind = ...,
|
||||
) -> _ErrDict: ...
|
||||
def geterr() -> _ErrDict: ...
|
||||
def setbufsize(size: int) -> int: ...
|
||||
def getbufsize() -> int: ...
|
||||
def seterrcall(
|
||||
func: None | _ErrFunc | _SupportsWrite[str]
|
||||
) -> None | _ErrFunc | _SupportsWrite[str]: ...
|
||||
def geterrcall() -> None | _ErrFunc | _SupportsWrite[str]: ...
|
||||
|
||||
# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`
|
||||
1725
AppDir/usr/lib/python3.12/site-packages/numpy/core/arrayprint.py
Normal file
1725
AppDir/usr/lib/python3.12/site-packages/numpy/core/arrayprint.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,142 @@
|
|||
from types import TracebackType
|
||||
from collections.abc import Callable
|
||||
from typing import Any, Literal, TypedDict, SupportsIndex
|
||||
|
||||
# Using a private class is by no means ideal, but it is simply a consequence
|
||||
# of a `contextlib.context` returning an instance of aforementioned class
|
||||
from contextlib import _GeneratorContextManager
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
generic,
|
||||
bool_,
|
||||
integer,
|
||||
timedelta64,
|
||||
datetime64,
|
||||
floating,
|
||||
complexfloating,
|
||||
void,
|
||||
str_,
|
||||
bytes_,
|
||||
longdouble,
|
||||
clongdouble,
|
||||
)
|
||||
from numpy._typing import ArrayLike, _CharLike_co, _FloatLike_co
|
||||
|
||||
_FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
|
||||
|
||||
class _FormatDict(TypedDict, total=False):
|
||||
bool: Callable[[bool_], str]
|
||||
int: Callable[[integer[Any]], str]
|
||||
timedelta: Callable[[timedelta64], str]
|
||||
datetime: Callable[[datetime64], str]
|
||||
float: Callable[[floating[Any]], str]
|
||||
longfloat: Callable[[longdouble], str]
|
||||
complexfloat: Callable[[complexfloating[Any, Any]], str]
|
||||
longcomplexfloat: Callable[[clongdouble], str]
|
||||
void: Callable[[void], str]
|
||||
numpystr: Callable[[_CharLike_co], str]
|
||||
object: Callable[[object], str]
|
||||
all: Callable[[object], str]
|
||||
int_kind: Callable[[integer[Any]], str]
|
||||
float_kind: Callable[[floating[Any]], str]
|
||||
complex_kind: Callable[[complexfloating[Any, Any]], str]
|
||||
str_kind: Callable[[_CharLike_co], str]
|
||||
|
||||
class _FormatOptions(TypedDict):
|
||||
precision: int
|
||||
threshold: int
|
||||
edgeitems: int
|
||||
linewidth: int
|
||||
suppress: bool
|
||||
nanstr: str
|
||||
infstr: str
|
||||
formatter: None | _FormatDict
|
||||
sign: Literal["-", "+", " "]
|
||||
floatmode: _FloatMode
|
||||
legacy: Literal[False, "1.13", "1.21"]
|
||||
|
||||
def set_printoptions(
|
||||
precision: None | SupportsIndex = ...,
|
||||
threshold: None | int = ...,
|
||||
edgeitems: None | int = ...,
|
||||
linewidth: None | int = ...,
|
||||
suppress: None | bool = ...,
|
||||
nanstr: None | str = ...,
|
||||
infstr: None | str = ...,
|
||||
formatter: None | _FormatDict = ...,
|
||||
sign: Literal[None, "-", "+", " "] = ...,
|
||||
floatmode: None | _FloatMode = ...,
|
||||
*,
|
||||
legacy: Literal[None, False, "1.13", "1.21"] = ...
|
||||
) -> None: ...
|
||||
def get_printoptions() -> _FormatOptions: ...
|
||||
def array2string(
|
||||
a: ndarray[Any, Any],
|
||||
max_line_width: None | int = ...,
|
||||
precision: None | SupportsIndex = ...,
|
||||
suppress_small: None | bool = ...,
|
||||
separator: str = ...,
|
||||
prefix: str = ...,
|
||||
# NOTE: With the `style` argument being deprecated,
|
||||
# all arguments between `formatter` and `suffix` are de facto
|
||||
# keyworld-only arguments
|
||||
*,
|
||||
formatter: None | _FormatDict = ...,
|
||||
threshold: None | int = ...,
|
||||
edgeitems: None | int = ...,
|
||||
sign: Literal[None, "-", "+", " "] = ...,
|
||||
floatmode: None | _FloatMode = ...,
|
||||
suffix: str = ...,
|
||||
legacy: Literal[None, False, "1.13", "1.21"] = ...,
|
||||
) -> str: ...
|
||||
def format_float_scientific(
|
||||
x: _FloatLike_co,
|
||||
precision: None | int = ...,
|
||||
unique: bool = ...,
|
||||
trim: Literal["k", ".", "0", "-"] = ...,
|
||||
sign: bool = ...,
|
||||
pad_left: None | int = ...,
|
||||
exp_digits: None | int = ...,
|
||||
min_digits: None | int = ...,
|
||||
) -> str: ...
|
||||
def format_float_positional(
|
||||
x: _FloatLike_co,
|
||||
precision: None | int = ...,
|
||||
unique: bool = ...,
|
||||
fractional: bool = ...,
|
||||
trim: Literal["k", ".", "0", "-"] = ...,
|
||||
sign: bool = ...,
|
||||
pad_left: None | int = ...,
|
||||
pad_right: None | int = ...,
|
||||
min_digits: None | int = ...,
|
||||
) -> str: ...
|
||||
def array_repr(
|
||||
arr: ndarray[Any, Any],
|
||||
max_line_width: None | int = ...,
|
||||
precision: None | SupportsIndex = ...,
|
||||
suppress_small: None | bool = ...,
|
||||
) -> str: ...
|
||||
def array_str(
|
||||
a: ndarray[Any, Any],
|
||||
max_line_width: None | int = ...,
|
||||
precision: None | SupportsIndex = ...,
|
||||
suppress_small: None | bool = ...,
|
||||
) -> str: ...
|
||||
def set_string_function(
|
||||
f: None | Callable[[ndarray[Any, Any]], str], repr: bool = ...
|
||||
) -> None: ...
|
||||
def printoptions(
|
||||
precision: None | SupportsIndex = ...,
|
||||
threshold: None | int = ...,
|
||||
edgeitems: None | int = ...,
|
||||
linewidth: None | int = ...,
|
||||
suppress: None | bool = ...,
|
||||
nanstr: None | str = ...,
|
||||
infstr: None | str = ...,
|
||||
formatter: None | _FormatDict = ...,
|
||||
sign: Literal[None, "-", "+", " "] = ...,
|
||||
floatmode: None | _FloatMode = ...,
|
||||
*,
|
||||
legacy: Literal[None, False, "1.13", "1.21"] = ...
|
||||
) -> _GeneratorContextManager[_FormatOptions]: ...
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
"""Simple script to compute the api hash of the current API.
|
||||
|
||||
The API has is defined by numpy_api_order and ufunc_api_order.
|
||||
|
||||
"""
|
||||
from os.path import dirname
|
||||
|
||||
from code_generators.genapi import fullapi_hash
|
||||
from code_generators.numpy_api import full_api
|
||||
|
||||
if __name__ == '__main__':
|
||||
curdir = dirname(__file__)
|
||||
print(fullapi_hash(full_api))
|
||||
2914
AppDir/usr/lib/python3.12/site-packages/numpy/core/defchararray.py
Normal file
2914
AppDir/usr/lib/python3.12/site-packages/numpy/core/defchararray.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,421 @@
|
|||
from typing import (
|
||||
Literal as L,
|
||||
overload,
|
||||
TypeVar,
|
||||
Any,
|
||||
)
|
||||
|
||||
from numpy import (
|
||||
chararray as chararray,
|
||||
dtype,
|
||||
str_,
|
||||
bytes_,
|
||||
int_,
|
||||
bool_,
|
||||
object_,
|
||||
_OrderKACF,
|
||||
)
|
||||
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
_ArrayLikeStr_co as U_co,
|
||||
_ArrayLikeBytes_co as S_co,
|
||||
_ArrayLikeInt_co as i_co,
|
||||
_ArrayLikeBool_co as b_co,
|
||||
)
|
||||
|
||||
from numpy.core.multiarray import compare_chararrays as compare_chararrays
|
||||
|
||||
_SCT = TypeVar("_SCT", str_, bytes_)
|
||||
_CharArray = chararray[Any, dtype[_SCT]]
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
# Comparison
|
||||
@overload
|
||||
def equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def not_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def not_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def greater_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def greater_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def less_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def less_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def greater(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def greater(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def less(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def less(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
|
||||
|
||||
# String operations
|
||||
@overload
|
||||
def add(x1: U_co, x2: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def add(x1: S_co, x2: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def multiply(a: U_co, i: i_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def multiply(a: S_co, i: i_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def mod(a: U_co, value: Any) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def mod(a: S_co, value: Any) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def capitalize(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def capitalize(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
def decode(
|
||||
a: S_co,
|
||||
encoding: None | str = ...,
|
||||
errors: None | str = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
|
||||
def encode(
|
||||
a: U_co,
|
||||
encoding: None | str = ...,
|
||||
errors: None | str = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def join(sep: U_co, seq: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def lower(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def lower(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def lstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def lstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def partition(a: U_co, sep: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def replace(
|
||||
a: U_co,
|
||||
old: U_co,
|
||||
new: U_co,
|
||||
count: None | i_co = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def replace(
|
||||
a: S_co,
|
||||
old: S_co,
|
||||
new: S_co,
|
||||
count: None | i_co = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rjust(
|
||||
a: U_co,
|
||||
width: i_co,
|
||||
fillchar: U_co = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def rjust(
|
||||
a: S_co,
|
||||
width: i_co,
|
||||
fillchar: S_co = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rsplit(
|
||||
a: U_co,
|
||||
sep: None | U_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def rsplit(
|
||||
a: S_co,
|
||||
sep: None | S_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def rstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def rstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def split(
|
||||
a: U_co,
|
||||
sep: None | U_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def split(
|
||||
a: S_co,
|
||||
sep: None | S_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def splitlines(a: U_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def splitlines(a: S_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def strip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def strip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def swapcase(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def swapcase(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def title(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def title(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def translate(
|
||||
a: U_co,
|
||||
table: U_co,
|
||||
deletechars: None | U_co = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def translate(
|
||||
a: S_co,
|
||||
table: S_co,
|
||||
deletechars: None | S_co = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def upper(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def upper(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def zfill(a: U_co, width: i_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ...
|
||||
|
||||
# String information
|
||||
@overload
|
||||
def count(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def count(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def endswith(
|
||||
a: U_co,
|
||||
suffix: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def endswith(
|
||||
a: S_co,
|
||||
suffix: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def find(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def find(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def index(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def index(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
def isalpha(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def isalnum(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def isdecimal(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def isdigit(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def islower(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def isnumeric(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def isspace(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def istitle(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
def isupper(a: U_co | S_co) -> NDArray[bool_]: ...
|
||||
|
||||
@overload
|
||||
def rfind(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def rfind(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def rindex(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def rindex(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def startswith(
|
||||
a: U_co,
|
||||
prefix: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def startswith(
|
||||
a: S_co,
|
||||
prefix: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[bool_]: ...
|
||||
|
||||
def str_len(A: U_co | S_co) -> NDArray[int_]: ...
|
||||
|
||||
# Overload 1 and 2: str- or bytes-based array-likes
|
||||
# overload 3: arbitrary object with unicode=False (-> bytes_)
|
||||
# overload 4: arbitrary object with unicode=True (-> str_)
|
||||
@overload
|
||||
def array(
|
||||
obj: U_co,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def array(
|
||||
obj: S_co,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def array(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def array(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[True] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
|
||||
@overload
|
||||
def asarray(
|
||||
obj: U_co,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def asarray(
|
||||
obj: S_co,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def asarray(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def asarray(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[True] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
1443
AppDir/usr/lib/python3.12/site-packages/numpy/core/einsumfunc.py
Normal file
1443
AppDir/usr/lib/python3.12/site-packages/numpy/core/einsumfunc.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,187 @@
|
|||
from collections.abc import Sequence
|
||||
from typing import TypeVar, Any, overload, Union, Literal
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
bool_,
|
||||
number,
|
||||
_OrderKACF,
|
||||
)
|
||||
from numpy._typing import (
|
||||
_ArrayLikeBool_co,
|
||||
_ArrayLikeUInt_co,
|
||||
_ArrayLikeInt_co,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
_ArrayLikeObject_co,
|
||||
_DTypeLikeBool,
|
||||
_DTypeLikeUInt,
|
||||
_DTypeLikeInt,
|
||||
_DTypeLikeFloat,
|
||||
_DTypeLikeComplex,
|
||||
_DTypeLikeComplex_co,
|
||||
_DTypeLikeObject,
|
||||
)
|
||||
|
||||
_ArrayType = TypeVar(
|
||||
"_ArrayType",
|
||||
bound=ndarray[Any, dtype[Union[bool_, number[Any]]]],
|
||||
)
|
||||
|
||||
_OptimizeKind = None | bool | Literal["greedy", "optimal"] | Sequence[Any]
|
||||
_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
|
||||
_CastingUnsafe = Literal["unsafe"]
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
# TODO: Properly handle the `casting`-based combinatorics
|
||||
# TODO: We need to evaluate the content `__subscripts` in order
|
||||
# to identify whether or an array or scalar is returned. At a cursory
|
||||
# glance this seems like something that can quite easily be done with
|
||||
# a mypy plugin.
|
||||
# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeBool_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeBool = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeUInt_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeUInt = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeInt_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeInt = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeFloat_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeFloat = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeComplex = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeComplex_co = ...,
|
||||
out: None = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
out: _ArrayType,
|
||||
dtype: None | _DTypeLikeComplex_co = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
out: _ArrayType,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeComplex_co = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeObject_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
out: None = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeObject_co,
|
||||
out: _ArrayType,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
out: _ArrayType,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
|
||||
# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
|
||||
# It is therefore excluded from the signatures below.
|
||||
# NOTE: In practice the list consists of a `str` (first element)
|
||||
# and a variable number of integer tuples.
|
||||
def einsum_path(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeComplex_co | _DTypeLikeObject,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> tuple[list[Any], str]: ...
|
||||
3920
AppDir/usr/lib/python3.12/site-packages/numpy/core/fromnumeric.py
Normal file
3920
AppDir/usr/lib/python3.12/site-packages/numpy/core/fromnumeric.py
Normal file
File diff suppressed because it is too large
Load diff
1060
AppDir/usr/lib/python3.12/site-packages/numpy/core/fromnumeric.pyi
Normal file
1060
AppDir/usr/lib/python3.12/site-packages/numpy/core/fromnumeric.pyi
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,551 @@
|
|||
import functools
|
||||
import warnings
|
||||
import operator
|
||||
import types
|
||||
|
||||
import numpy as np
|
||||
from . import numeric as _nx
|
||||
from .numeric import result_type, NaN, asanyarray, ndim
|
||||
from numpy.core.multiarray import add_docstring
|
||||
from numpy.core import overrides
|
||||
|
||||
__all__ = ['logspace', 'linspace', 'geomspace']
|
||||
|
||||
|
||||
array_function_dispatch = functools.partial(
|
||||
overrides.array_function_dispatch, module='numpy')
|
||||
|
||||
|
||||
def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
|
||||
dtype=None, axis=None):
|
||||
return (start, stop)
|
||||
|
||||
|
||||
@array_function_dispatch(_linspace_dispatcher)
|
||||
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
|
||||
axis=0):
|
||||
"""
|
||||
Return evenly spaced numbers over a specified interval.
|
||||
|
||||
Returns `num` evenly spaced samples, calculated over the
|
||||
interval [`start`, `stop`].
|
||||
|
||||
The endpoint of the interval can optionally be excluded.
|
||||
|
||||
.. versionchanged:: 1.16.0
|
||||
Non-scalar `start` and `stop` are now supported.
|
||||
|
||||
.. versionchanged:: 1.20.0
|
||||
Values are rounded towards ``-inf`` instead of ``0`` when an
|
||||
integer ``dtype`` is specified. The old behavior can
|
||||
still be obtained with ``np.linspace(start, stop, num).astype(int)``
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : array_like
|
||||
The starting value of the sequence.
|
||||
stop : array_like
|
||||
The end value of the sequence, unless `endpoint` is set to False.
|
||||
In that case, the sequence consists of all but the last of ``num + 1``
|
||||
evenly spaced samples, so that `stop` is excluded. Note that the step
|
||||
size changes when `endpoint` is False.
|
||||
num : int, optional
|
||||
Number of samples to generate. Default is 50. Must be non-negative.
|
||||
endpoint : bool, optional
|
||||
If True, `stop` is the last sample. Otherwise, it is not included.
|
||||
Default is True.
|
||||
retstep : bool, optional
|
||||
If True, return (`samples`, `step`), where `step` is the spacing
|
||||
between samples.
|
||||
dtype : dtype, optional
|
||||
The type of the output array. If `dtype` is not given, the data type
|
||||
is inferred from `start` and `stop`. The inferred dtype will never be
|
||||
an integer; `float` is chosen even if the arguments would produce an
|
||||
array of integers.
|
||||
|
||||
.. versionadded:: 1.9.0
|
||||
|
||||
axis : int, optional
|
||||
The axis in the result to store the samples. Relevant only if start
|
||||
or stop are array-like. By default (0), the samples will be along a
|
||||
new axis inserted at the beginning. Use -1 to get an axis at the end.
|
||||
|
||||
.. versionadded:: 1.16.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : ndarray
|
||||
There are `num` equally spaced samples in the closed interval
|
||||
``[start, stop]`` or the half-open interval ``[start, stop)``
|
||||
(depending on whether `endpoint` is True or False).
|
||||
step : float, optional
|
||||
Only returned if `retstep` is True
|
||||
|
||||
Size of spacing between samples.
|
||||
|
||||
|
||||
See Also
|
||||
--------
|
||||
arange : Similar to `linspace`, but uses a step size (instead of the
|
||||
number of samples).
|
||||
geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
|
||||
scale (a geometric progression).
|
||||
logspace : Similar to `geomspace`, but with the end points specified as
|
||||
logarithms.
|
||||
:ref:`how-to-partition`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.linspace(2.0, 3.0, num=5)
|
||||
array([2. , 2.25, 2.5 , 2.75, 3. ])
|
||||
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
|
||||
array([2. , 2.2, 2.4, 2.6, 2.8])
|
||||
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
|
||||
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
|
||||
|
||||
Graphical illustration:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> N = 8
|
||||
>>> y = np.zeros(N)
|
||||
>>> x1 = np.linspace(0, 10, N, endpoint=True)
|
||||
>>> x2 = np.linspace(0, 10, N, endpoint=False)
|
||||
>>> plt.plot(x1, y, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.plot(x2, y + 0.5, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.ylim([-0.5, 1])
|
||||
(-0.5, 1)
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
num = operator.index(num)
|
||||
if num < 0:
|
||||
raise ValueError("Number of samples, %s, must be non-negative." % num)
|
||||
div = (num - 1) if endpoint else num
|
||||
|
||||
# Convert float/complex array scalars to float, gh-3504
|
||||
# and make sure one can use variables that have an __array_interface__, gh-6634
|
||||
start = asanyarray(start) * 1.0
|
||||
stop = asanyarray(stop) * 1.0
|
||||
|
||||
dt = result_type(start, stop, float(num))
|
||||
if dtype is None:
|
||||
dtype = dt
|
||||
integer_dtype = False
|
||||
else:
|
||||
integer_dtype = _nx.issubdtype(dtype, _nx.integer)
|
||||
|
||||
delta = stop - start
|
||||
y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
|
||||
# In-place multiplication y *= delta/div is faster, but prevents the multiplicant
|
||||
# from overriding what class is produced, and thus prevents, e.g. use of Quantities,
|
||||
# see gh-7142. Hence, we multiply in place only for standard scalar types.
|
||||
if div > 0:
|
||||
_mult_inplace = _nx.isscalar(delta)
|
||||
step = delta / div
|
||||
any_step_zero = (
|
||||
step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any())
|
||||
if any_step_zero:
|
||||
# Special handling for denormal numbers, gh-5437
|
||||
y /= div
|
||||
if _mult_inplace:
|
||||
y *= delta
|
||||
else:
|
||||
y = y * delta
|
||||
else:
|
||||
if _mult_inplace:
|
||||
y *= step
|
||||
else:
|
||||
y = y * step
|
||||
else:
|
||||
# sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
|
||||
# have an undefined step
|
||||
step = NaN
|
||||
# Multiply with delta to allow possible override of output class.
|
||||
y = y * delta
|
||||
|
||||
y += start
|
||||
|
||||
if endpoint and num > 1:
|
||||
y[-1, ...] = stop
|
||||
|
||||
if axis != 0:
|
||||
y = _nx.moveaxis(y, 0, axis)
|
||||
|
||||
if integer_dtype:
|
||||
_nx.floor(y, out=y)
|
||||
|
||||
if retstep:
|
||||
return y.astype(dtype, copy=False), step
|
||||
else:
|
||||
return y.astype(dtype, copy=False)
|
||||
|
||||
|
||||
def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
|
||||
dtype=None, axis=None):
|
||||
return (start, stop, base)
|
||||
|
||||
|
||||
@array_function_dispatch(_logspace_dispatcher)
|
||||
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
|
||||
axis=0):
|
||||
"""
|
||||
Return numbers spaced evenly on a log scale.
|
||||
|
||||
In linear space, the sequence starts at ``base ** start``
|
||||
(`base` to the power of `start`) and ends with ``base ** stop``
|
||||
(see `endpoint` below).
|
||||
|
||||
.. versionchanged:: 1.16.0
|
||||
Non-scalar `start` and `stop` are now supported.
|
||||
|
||||
.. versionchanged:: 1.25.0
|
||||
Non-scalar 'base` is now supported
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : array_like
|
||||
``base ** start`` is the starting value of the sequence.
|
||||
stop : array_like
|
||||
``base ** stop`` is the final value of the sequence, unless `endpoint`
|
||||
is False. In that case, ``num + 1`` values are spaced over the
|
||||
interval in log-space, of which all but the last (a sequence of
|
||||
length `num`) are returned.
|
||||
num : integer, optional
|
||||
Number of samples to generate. Default is 50.
|
||||
endpoint : boolean, optional
|
||||
If true, `stop` is the last sample. Otherwise, it is not included.
|
||||
Default is True.
|
||||
base : array_like, optional
|
||||
The base of the log space. The step size between the elements in
|
||||
``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
|
||||
Default is 10.0.
|
||||
dtype : dtype
|
||||
The type of the output array. If `dtype` is not given, the data type
|
||||
is inferred from `start` and `stop`. The inferred type will never be
|
||||
an integer; `float` is chosen even if the arguments would produce an
|
||||
array of integers.
|
||||
axis : int, optional
|
||||
The axis in the result to store the samples. Relevant only if start,
|
||||
stop, or base are array-like. By default (0), the samples will be
|
||||
along a new axis inserted at the beginning. Use -1 to get an axis at
|
||||
the end.
|
||||
|
||||
.. versionadded:: 1.16.0
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : ndarray
|
||||
`num` samples, equally spaced on a log scale.
|
||||
|
||||
See Also
|
||||
--------
|
||||
arange : Similar to linspace, with the step size specified instead of the
|
||||
number of samples. Note that, when used with a float endpoint, the
|
||||
endpoint may or may not be included.
|
||||
linspace : Similar to logspace, but with the samples uniformly distributed
|
||||
in linear space, instead of log space.
|
||||
geomspace : Similar to logspace, but with endpoints specified directly.
|
||||
:ref:`how-to-partition`
|
||||
|
||||
Notes
|
||||
-----
|
||||
If base is a scalar, logspace is equivalent to the code
|
||||
|
||||
>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
|
||||
... # doctest: +SKIP
|
||||
>>> power(base, y).astype(dtype)
|
||||
... # doctest: +SKIP
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.logspace(2.0, 3.0, num=4)
|
||||
array([ 100. , 215.443469 , 464.15888336, 1000. ])
|
||||
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
|
||||
array([100. , 177.827941 , 316.22776602, 562.34132519])
|
||||
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
|
||||
array([4. , 5.0396842 , 6.34960421, 8. ])
|
||||
>>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
|
||||
array([[ 4. , 5.0396842 , 6.34960421, 8. ],
|
||||
[ 9. , 12.98024613, 18.72075441, 27. ]])
|
||||
|
||||
Graphical illustration:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> N = 10
|
||||
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
|
||||
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
|
||||
>>> y = np.zeros(N)
|
||||
>>> plt.plot(x1, y, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.plot(x2, y + 0.5, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.ylim([-0.5, 1])
|
||||
(-0.5, 1)
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
ndmax = np.broadcast(start, stop, base).ndim
|
||||
start, stop, base = (
|
||||
np.array(a, copy=False, subok=True, ndmin=ndmax)
|
||||
for a in (start, stop, base)
|
||||
)
|
||||
y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
|
||||
base = np.expand_dims(base, axis=axis)
|
||||
if dtype is None:
|
||||
return _nx.power(base, y)
|
||||
return _nx.power(base, y).astype(dtype, copy=False)
|
||||
|
||||
|
||||
def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
|
||||
axis=None):
|
||||
return (start, stop)
|
||||
|
||||
|
||||
@array_function_dispatch(_geomspace_dispatcher)
|
||||
def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
|
||||
"""
|
||||
Return numbers spaced evenly on a log scale (a geometric progression).
|
||||
|
||||
This is similar to `logspace`, but with endpoints specified directly.
|
||||
Each output sample is a constant multiple of the previous.
|
||||
|
||||
.. versionchanged:: 1.16.0
|
||||
Non-scalar `start` and `stop` are now supported.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : array_like
|
||||
The starting value of the sequence.
|
||||
stop : array_like
|
||||
The final value of the sequence, unless `endpoint` is False.
|
||||
In that case, ``num + 1`` values are spaced over the
|
||||
interval in log-space, of which all but the last (a sequence of
|
||||
length `num`) are returned.
|
||||
num : integer, optional
|
||||
Number of samples to generate. Default is 50.
|
||||
endpoint : boolean, optional
|
||||
If true, `stop` is the last sample. Otherwise, it is not included.
|
||||
Default is True.
|
||||
dtype : dtype
|
||||
The type of the output array. If `dtype` is not given, the data type
|
||||
is inferred from `start` and `stop`. The inferred dtype will never be
|
||||
an integer; `float` is chosen even if the arguments would produce an
|
||||
array of integers.
|
||||
axis : int, optional
|
||||
The axis in the result to store the samples. Relevant only if start
|
||||
or stop are array-like. By default (0), the samples will be along a
|
||||
new axis inserted at the beginning. Use -1 to get an axis at the end.
|
||||
|
||||
.. versionadded:: 1.16.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : ndarray
|
||||
`num` samples, equally spaced on a log scale.
|
||||
|
||||
See Also
|
||||
--------
|
||||
logspace : Similar to geomspace, but with endpoints specified using log
|
||||
and base.
|
||||
linspace : Similar to geomspace, but with arithmetic instead of geometric
|
||||
progression.
|
||||
arange : Similar to linspace, with the step size specified instead of the
|
||||
number of samples.
|
||||
:ref:`how-to-partition`
|
||||
|
||||
Notes
|
||||
-----
|
||||
If the inputs or dtype are complex, the output will follow a logarithmic
|
||||
spiral in the complex plane. (There are an infinite number of spirals
|
||||
passing through two points; the output will follow the shortest such path.)
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.geomspace(1, 1000, num=4)
|
||||
array([ 1., 10., 100., 1000.])
|
||||
>>> np.geomspace(1, 1000, num=3, endpoint=False)
|
||||
array([ 1., 10., 100.])
|
||||
>>> np.geomspace(1, 1000, num=4, endpoint=False)
|
||||
array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
|
||||
>>> np.geomspace(1, 256, num=9)
|
||||
array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
|
||||
|
||||
Note that the above may not produce exact integers:
|
||||
|
||||
>>> np.geomspace(1, 256, num=9, dtype=int)
|
||||
array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
|
||||
>>> np.around(np.geomspace(1, 256, num=9)).astype(int)
|
||||
array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
|
||||
|
||||
Negative, decreasing, and complex inputs are allowed:
|
||||
|
||||
>>> np.geomspace(1000, 1, num=4)
|
||||
array([1000., 100., 10., 1.])
|
||||
>>> np.geomspace(-1000, -1, num=4)
|
||||
array([-1000., -100., -10., -1.])
|
||||
>>> np.geomspace(1j, 1000j, num=4) # Straight line
|
||||
array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
|
||||
>>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
|
||||
array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
|
||||
6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
|
||||
1.00000000e+00+0.00000000e+00j])
|
||||
|
||||
Graphical illustration of `endpoint` parameter:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> N = 10
|
||||
>>> y = np.zeros(N)
|
||||
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.axis([0.5, 2000, 0, 3])
|
||||
[0.5, 2000, 0, 3]
|
||||
>>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
start = asanyarray(start)
|
||||
stop = asanyarray(stop)
|
||||
if _nx.any(start == 0) or _nx.any(stop == 0):
|
||||
raise ValueError('Geometric sequence cannot include zero')
|
||||
|
||||
dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
|
||||
if dtype is None:
|
||||
dtype = dt
|
||||
else:
|
||||
# complex to dtype('complex128'), for instance
|
||||
dtype = _nx.dtype(dtype)
|
||||
|
||||
# Promote both arguments to the same dtype in case, for instance, one is
|
||||
# complex and another is negative and log would produce NaN otherwise.
|
||||
# Copy since we may change things in-place further down.
|
||||
start = start.astype(dt, copy=True)
|
||||
stop = stop.astype(dt, copy=True)
|
||||
|
||||
out_sign = _nx.ones(_nx.broadcast(start, stop).shape, dt)
|
||||
# Avoid negligible real or imaginary parts in output by rotating to
|
||||
# positive real, calculating, then undoing rotation
|
||||
if _nx.issubdtype(dt, _nx.complexfloating):
|
||||
all_imag = (start.real == 0.) & (stop.real == 0.)
|
||||
if _nx.any(all_imag):
|
||||
start[all_imag] = start[all_imag].imag
|
||||
stop[all_imag] = stop[all_imag].imag
|
||||
out_sign[all_imag] = 1j
|
||||
|
||||
both_negative = (_nx.sign(start) == -1) & (_nx.sign(stop) == -1)
|
||||
if _nx.any(both_negative):
|
||||
_nx.negative(start, out=start, where=both_negative)
|
||||
_nx.negative(stop, out=stop, where=both_negative)
|
||||
_nx.negative(out_sign, out=out_sign, where=both_negative)
|
||||
|
||||
log_start = _nx.log10(start)
|
||||
log_stop = _nx.log10(stop)
|
||||
result = logspace(log_start, log_stop, num=num,
|
||||
endpoint=endpoint, base=10.0, dtype=dtype)
|
||||
|
||||
# Make sure the endpoints match the start and stop arguments. This is
|
||||
# necessary because np.exp(np.log(x)) is not necessarily equal to x.
|
||||
if num > 0:
|
||||
result[0] = start
|
||||
if num > 1 and endpoint:
|
||||
result[-1] = stop
|
||||
|
||||
result = out_sign * result
|
||||
|
||||
if axis != 0:
|
||||
result = _nx.moveaxis(result, 0, axis)
|
||||
|
||||
return result.astype(dtype, copy=False)
|
||||
|
||||
|
||||
def _needs_add_docstring(obj):
|
||||
"""
|
||||
Returns true if the only way to set the docstring of `obj` from python is
|
||||
via add_docstring.
|
||||
|
||||
This function errs on the side of being overly conservative.
|
||||
"""
|
||||
Py_TPFLAGS_HEAPTYPE = 1 << 9
|
||||
|
||||
if isinstance(obj, (types.FunctionType, types.MethodType, property)):
|
||||
return False
|
||||
|
||||
if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _add_docstring(obj, doc, warn_on_python):
|
||||
if warn_on_python and not _needs_add_docstring(obj):
|
||||
warnings.warn(
|
||||
"add_newdoc was used on a pure-python object {}. "
|
||||
"Prefer to attach it directly to the source."
|
||||
.format(obj),
|
||||
UserWarning,
|
||||
stacklevel=3)
|
||||
try:
|
||||
add_docstring(obj, doc)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
def add_newdoc(place, obj, doc, warn_on_python=True):
|
||||
"""
|
||||
Add documentation to an existing object, typically one defined in C
|
||||
|
||||
The purpose is to allow easier editing of the docstrings without requiring
|
||||
a re-compile. This exists primarily for internal use within numpy itself.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
place : str
|
||||
The absolute name of the module to import from
|
||||
obj : str
|
||||
The name of the object to add documentation to, typically a class or
|
||||
function name
|
||||
doc : {str, Tuple[str, str], List[Tuple[str, str]]}
|
||||
If a string, the documentation to apply to `obj`
|
||||
|
||||
If a tuple, then the first element is interpreted as an attribute of
|
||||
`obj` and the second as the docstring to apply - ``(method, docstring)``
|
||||
|
||||
If a list, then each element of the list should be a tuple of length
|
||||
two - ``[(method1, docstring1), (method2, docstring2), ...]``
|
||||
warn_on_python : bool
|
||||
If True, the default, emit `UserWarning` if this is used to attach
|
||||
documentation to a pure-python object.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This routine never raises an error if the docstring can't be written, but
|
||||
will raise an error if the object being documented does not exist.
|
||||
|
||||
This routine cannot modify read-only docstrings, as appear
|
||||
in new-style classes or built-in functions. Because this
|
||||
routine never raises an error the caller must check manually
|
||||
that the docstrings were changed.
|
||||
|
||||
Since this function grabs the ``char *`` from a c-level str object and puts
|
||||
it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
|
||||
C-API best-practices, by:
|
||||
|
||||
- modifying a `PyTypeObject` after calling `PyType_Ready`
|
||||
- calling `Py_INCREF` on the str and losing the reference, so the str
|
||||
will never be released
|
||||
|
||||
If possible it should be avoided.
|
||||
"""
|
||||
new = getattr(__import__(place, globals(), {}, [obj]), obj)
|
||||
if isinstance(doc, str):
|
||||
_add_docstring(new, doc.strip(), warn_on_python)
|
||||
elif isinstance(doc, tuple):
|
||||
attr, docstring = doc
|
||||
_add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
|
||||
elif isinstance(doc, list):
|
||||
for attr, docstring in doc:
|
||||
_add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
|
||||
|
|
@ -0,0 +1,187 @@
|
|||
from typing import (
|
||||
Literal as L,
|
||||
overload,
|
||||
Any,
|
||||
SupportsIndex,
|
||||
TypeVar,
|
||||
)
|
||||
|
||||
from numpy import floating, complexfloating, generic
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
DTypeLike,
|
||||
_DTypeLike,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
)
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> tuple[NDArray[floating[Any]], floating[Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> tuple[NDArray[complexfloating[Any, Any]], complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> tuple[NDArray[_SCT], _SCT]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> tuple[NDArray[Any], Any]: ...
|
||||
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeFloat_co = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeComplex_co = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeComplex_co = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeComplex_co = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
# Re-exported to `np.lib.function_base`
|
||||
def add_newdoc(
|
||||
place: str,
|
||||
obj: str,
|
||||
doc: str | tuple[str, str] | list[tuple[str, str]],
|
||||
warn_on_python: bool = ...,
|
||||
) -> None: ...
|
||||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue